
A Bounded Symbolic-Size Model for Symbolic Execution

David Trabish
Tel Aviv University

Israel
davivtra@post.tau.ac.il

Shachar Itzhaky
Technion
Israel

shachari@cs.technion.ac.il

Noam Rinetzky
Tel Aviv University

Israel
maon@cs.tau.ac.il

ABSTRACT

Symbolic execution is a powerful program analysis techniquewhich
allows executing programs with symbolic inputs. Modern symbolic
execution tools use a concrete modeling of object sizes, that does
not allow symbolic-size allocations. This leads to concretizations
and enforces the user to set the size of the input ahead of time, thus
potentially leading to loss of coverage during the analysis.

We present a bounded symbolic-size model in which the size
of an object can have a range of values limited by a user-specified
bound. Unfortunately, this model amplifies the problem of path
explosion, due to additional symbolic expressions representing sizes.
To cope with this problem, we propose an approach based on state
merging that reduces the forking by applying special treatment to
symbolic-size dependent loops.

In our evaluation on real-world benchmarks, we show that our
approach can lead in many cases to substantial gains in terms of
performance and coverage, and find previously unknown bugs.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Symbolic Execution

ACM Reference Format:

David Trabish, Shachar Itzhaky, and Noam Rinetzky. 2021. A Bounded
Symbolic-Size Model for Symbolic Execution. In Proceedings of the 29th

ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE ’21), August 23ś28, 2021,

Athens, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3468264.3468596

1 INTRODUCTION

Symbolic execution (SE) is a program analysis technique that has
gained significant attention over the last years in both academic and
industrial areas, including software engineering, software testing,
programming languages, program verification, and cybersecurity. It
lies at the core of many applications such as high-coverage test gen-
eration [14, 15, 32], bug finding [14, 20], debugging [23], automatic
program repair [28, 30], cross checking [16, 25], and side-channel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468596

analysis [12, 13, 31]. In symbolic execution, the program is run
with an unconstrained symbolic input, rather than with a concrete
one. Whenever the execution reaches a branch that depends on one
of the symbolic inputs, an SMT solver [17] is used to determine
the feasibility of each branch side, and the appropriate paths are
further explored while updating their paths constraints with the
corresponding constraints. Once the execution of a given path is
completed, the solver generates a satisfying assignment using the
corresponding path constraints, i.e., a concrete test case that can
be used to replay that path.

In modern symbolic execution tools [14, 29, 38], the memory is
modeled using a linear address space where each memory object
has a fixed concrete size. Such model imposes two main limitations:
When the inputs of the program under test are of variable size,
e.g., array and strings, the size of these inputs must be concretely
determined before the analysis takes off. Moreover, if an allocation
of symbolic size is encountered during the analysis of the program,
then the size of that allocation has to be concretized. Therefore,
while being a natural design choice, the existing model may lose
coverage and miss bugs.

As amotivating example, consider the code fragments taken from
libosip [6] shown in Figure 1, that depict two bugs found during
our experiments. The osip_via_parse function is responsible for
parsing the VIA header of a request message in the Session Initiation
Protocol (SIP). It first looks for the leading occurrence of ’/’ (line 4),
and if found looks for the second occurrence of ’/’ (line 7). If the
distance between the two occurrences of the ’/’ characters is too
small (line 10), then the parsing is stopped. Otherwise, it validates
that there is at least one space after the second occurrence of ’/’,
and if that is the case, it skips additional spaces in the input (the
loop in line 17). The host pointer is incremented at the beginning
of each iteration (line 18), so host may point to the null-terminator

of the string after the execution of the loop. So when that happens,
the call to strchr at line 22 results in an out-of-bound read, since
host + 1 points to an invalid memory. You may notice that this
bug is reachable only if the length of the input string is at least
5 (including the null-terminator). Therefore, if the user decides to
analyze this function with a shorter input, then the bug would
remain undetected. Picking a longer input string would help in the
last case, but may similarly lead to missed bugs in other cases. To
see why, consider the second function osip_uri_parse_headers.
It searches the input string headers for the first occurrence of ’=’
(line 30), and then independently looks for the first occurrence of
’&’ starting from the second character of headers (line 32). Clearly,
that would result in an out-of-bound read if the input string is empty.
Therefore, if the user decides to analyze this function with a longer
input, then the bug would remain undetected as well.

In this paper, we propose a model that supports symbolic-size
allocations, and thus enabling the analysis of programs with inputs

1190

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468596
https://doi.org/10.1145/3468264.3468596
https://doi.org/10.1145/3468264.3468596

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece David Trabish, Shachar Itzhaky, and Noam Rinetzky

whose size belongs to a range of values. Designing an unbounded

model in which the symbolic size of an object is unconstrained,
imposes several difficulties. Symbolic execution tools typically use a
linear address space where the base addresses of memory objects are
concrete values, so address ranges of distinct memory objects may
overlap in the presence of unboundedmemory objects. To overcome
this, one would have to adopt a two-dimensional address space
where each object has its own address space, or use symbolic base
addresses with some additional constraints that will ensure the non-
overlapping of address ranges. Besides, symbolic execution tools
use the QF_ABV logic fragment [10, 11, 19] to track the contents
of memory objects, meaning that the value at each offset within
a memory object is maintained explicitly. As a result, the analysis
with big enough objects will not be possible, as it will require an
amount of memory which is not available on modern machines.
Therefore, we design a bounded model, where the symbolic size of
memory objects is bounded by a user-specified capacity. This model
does not require changing the modeling of the address space, thus
can be easily integrated with existing symbolic execution tools.

Our model, however, increases the number of forks due to the
introduction of additional symbolic expressions, i.e., the symbolic
sizes. This is particularly noticeable in loops where the number
of iterations depends on a symbolic size expression, leading to a
number of forks which is typically at least linear in the size. To
cope with the amplified path explosion, we propose a state merging
approach which is applied in symbolic-size dependent loops, the
main scenario where our model introduces additional forking.

Our main contributions can be summarized as follows:

(1) We present a bounded symbolic-size model that enables
analysis with variable-size inputs.

(2) We propose a state merging based approach to mitigate the
path explosion introduced by our model.

(3) We implement a KLEE-based prototype, which we make
available as open-source.

(4) We evaluate our model in the context of API and whole-
program testing, and find previously unknown bugs.

2 PRELIMINARIES

In modern symbolic execution engines, e.g., KLEE [14], a memory
object is represented as a tuple:

(b, s, a) ∈ N+ × N+ × A

where b is a concrete base address, s is a concrete size, and a is a
solver array that tracks the values written to that memory object.
The address space is then represented as a set of non-overlapping
memory objects, i.e., every memory object has its own unique
address range which does not intersect with the address ranges
of other memory objects. This non-overlapping property allows
identifying memory objects by addresses, i.e., a concrete address
may be associated with at most one memory object.

When a pointer p is accessed, the engine needs first to resolve
it, i.e., find the memory objects that p may point to. To determine
if a memory object mo = (b, s, a) may be pointed by p, the engine
checks if the following resolution query is satisfiable:

b ≤ p < b + s

1 int osip_via_parse(osip_via_t *via, const char *hvalue) {

2 if (hvalue == NULL)

3 return OSIP_BADPARAMETER;

4 const char *version = strchr(hvalue, '/');

5 if (version == NULL)

6 return OSIP_SYNTAXERROR;

7 const char *protocol = strchr(version + 1, '/');

8 if (protocol == NULL)

9 return OSIP_SYNTAXERROR;

10 if (protocol - version < 2)

11 return OSIP_SYNTAXERROR;

12 ...

13 const char *host = strchr(protocol + 1, '␣');

14 if (host == NULL)

15 return OSIP_SYNTAXERROR;

16 if (host == protocol + 1) {

17 while (0 == strncmp(host, "␣", 1)) {

18 host++;

19 if (strlen(host) == 1)

20 return OSIP_SYNTAXERROR;

21 }

22 // out-of-bound read

23 host = strchr(host + 1, '␣');

24 ...

25 }

26 ...

27 }

28 int osip_uri_parse_headers(osip_uri_t *url,

29 const char *headers) {

30 const char *equal = strchr(headers, '=');

31 // out-of-bound read

32 const char *_and = strchr(headers + 1, '&');

33 ...

34 }

Figure 1: Bugs found in libosip 5.2.0.

1 size_t n; // symbolic

2 char *p = calloc(n, 1);

3 char *q = calloc(10, 1);

Figure 2: Unbounded symbolic size.

When p may point to mo, the offset e with which the object is
accessed is given by: p−b. When the eth byte ofmo is read, its value
is expressed by select (a, e). If a value v is written to the eth offset,
the array a is replaced by a new array expressed by store(a, e,v).

A symbolic state s is represented as follows: s .pc denotes the path
constraints, s .m is a mapping between variables and expressions
(concrete or symbolic), and s .h is a set of memory objects.

3 TECHNIQUE

3.1 Symbolic-Size Model

Ideally, we would like to have a model where the symbolic size of
an object can be arbitrarily large, i.e., unbounded. However, such
model imposes several challenges.

In the concrete-size model every object has a fixed address range,
so when a new object has to be allocated, the memory allocator can
easily pick a new address range which does not intersect with the
existing ones. To illustrate why this is no longer true with symbolic-
size allocations, consider the example from Figure 2. Let’s assume

1191

A Bounded Symbolic-Size Model for Symbolic Execution ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 size_t n; // symbolic

2 size_t z; // symbolic

3 char *p = malloc(n); // capacity is 3

4 for (unsigned i = 0; i < n; i++) {

5 if (z == 0) {

6 break;

7 }

8 p[i] = i;

9 }

Figure 3: Symbolic-size dependent loop.

that the first memory object (line 2) is allocated at address 7000 and
has an unbounded symbolic size n. The symbolic execution engine
can’t allocate the second memory object (line 3) at a concrete base
address after the first memory object as the resulting address range
might overlap with the address range of the first memory object,
thus violating the non-overlapping property. To overcome this, we
will have to allocate the second memory object at some symbolic
base address β , and encode the non-overlapping property directly in
the path constraints. In our example, the non-overlapping property
of the two memory objects:

[7000, 7000 + n) ∩ [β, β + 10) = ∅

will be encoded using the following constraints:

β + 10 ≤ 7000 ∨ β ≥ 7000 + n

As the number of such constraints is expected to grow with the
size of the address space, i.e., the number of memory objects, this
will eventually become a burden on the solver.

Symbolic execution engines typically use the QF_ABV logic
fragment to encode read andwrite operations. As this logic fragment
is quantifier-free, when we read or write to some offset within a
memory object, this operation results in an explicit encoding. Note
that in the example from Figure 2, the first object is allocated with
calloc, which initializes the memory with zeros. If we don’t have
a concrete bound for the size of this object, i.e., the maximum value
for n, then we would be forced to use some form the universal
(forall) quantifier to express the side effect of calloc. Even if we
have such concrete bound, the value stored at each offset is encoded
separately, so the size of the encoding for the whole object would
be at least linear. That means that for large enough objects, the
analysis will be impossible due to the extremely highmemory usage,
suggesting that the size of a given object should be limited anyway.

We thus propose a bounded symbolic-size model in which a
memory object is represented as a tuple:

(b,σ , c, a) ∈ N+ × E × N+ × A

where b and a are defined similarly to Section 2, σ is a symbolic
expression describing the size of the memory object, and c is the
maximum concrete value for σ , i.e., the capacity of the memory
object. The pointer resolution process together with the read and
write operations (described in Section 2) remain almost unmodified
with the small change of replacing the concrete size s with the
symbolic one σ .

𝑆0 𝑛 > 0𝑆1 𝑆2𝑛 ≤ 0
𝑆3 𝑆4𝑆5 𝑆6𝑆7 𝑆8

𝑧 ≠ 0𝑧 = 0
𝑛 > 1𝑛 ≤ 1

𝑛 > 2𝑛 ≤ 2

𝑛 ≤ 3

Figure 4: The execution tree of the program from Figure 3.

3.2 Mitigating Path Explosion By State Merging

Our model enables a more complete analysis since it supports the
symbolic execution of programs with objects whose size can have
a range of values rather than only a fixed one. Nevertheless, this
does not come without a cost: Our model introduces additional
symbolic values that describe objects sizes, which in turn may lead
to additional forks and more complex constraints, thus amplifying
the known problems of path explosion and constraint solving.

To illustrate this, consider the program from Figure 3. In the
concrete-size model the value of n is concretized to some concrete
value, and the symbolic execution of the program may fork only
at line 5, thus exploring at most two paths. Note that with our
symbolic-size model, the branch condition i < n at line 4 is now
a symbolic expression. Therefore, each iteration of the loop will
potentially produce a new fork. For example, assuming that the
capacity for the allocation at line 3 is 3, the memory object allocated
at this line would be (b,n, 3, a), and the constraint n ≤ 3 will be
added to the path constraints. Then, five paths will be explored:
One path which does not enter the loop when n = 0, another path
that executes the first iteration and breaks from the loop at line 6,
and three paths that execute k full iterations for 1 ≤ k ≤ 3.

To cope with the problem of path explosion, we employ state
merging [22, 26], a technique that enables the merging of multiple
execution paths. We apply state merging specifically in locations
where our model introduces additional forking, as typically hap-
pens in symbolic-size dependent loops, rather than applying it
opportunistically in every possible join point.

3.2.1 Merging Symbolic-Size Objects. In our model, the merging
of symbolic states is defined similarly to previous works [22, 26],
except for the case of symbolic-size memory objects which requires
a special treatment. Let s1 and s2 be two symbolic states, and let
mo1 = (b,σ , c, a1) and mo2 = (b,σ , c, a2) be two memory objects
in s1 and s2, respectively. The merged memory object (b,σ , c, a) is
constructed such that the following holds:

∀0 ≤ i < c. select (a, i) = ite (s1.pc, select (a1, i), select (a2, i))

Note that the actual size bound of a given memory object (b,σ , c, a),
i.e., the maximum value of σ , can be less than its capacity c. For
example, this would happen in the program from Figure 2, if at the
moment of allocation at line 2 we had the constraint n < 5 and the

1192

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece David Trabish, Shachar Itzhaky, and Noam Rinetzky

user specified capacity was 10. Before accessing the ith offset of the
solver array a, the symbolic execution engine always validates that i
is in-bound, i.e., i < σ . Therefore, even if i is an out-of-bound offset
in mo1 (or mo2), our representation of the merged memory object
is still valid, since the ith offset will never be accessed anyway.

3.2.2 Loops. A function’s control flow graph (CFG) is a directed
graph whose nodes are basic blocks (or instructions), where the
edges represent possible transitions of the control flow between
basic blocks. A loop is a strongly connected component in the CFG.
A loop exit of a loop L is a node in the CFG which does not belong
to L, but has a predecessor in L. We assume that for any given basic
block (and instruction), we can tell if it belongs to a loop L or not.

3.2.3 Detecting Symbolic-Size Dependent Loops. We apply state
merging selectively only in loops whose execution depends on a
symbolic size expression. We detect such loops dynamically: When
the symbolic execution engine allocates an object (b,σ , c, a) with a
symbolic size, we mark the (atomic) symbolic variables that build
the expression σ as tainted. If later, during the execution of a loop
L, we encounter a branch instruction that results in a fork while
the corresponding branch condition is tainted, then L is considered
to be symbolic-size dependent.

3.2.4 Loop Merging. Algorithm 1 depicts the application of state
merging for symbolic-size dependent loops1. When a symbolic state
s executing a loop l reaches a branch whose condition c is tainted,
we associate s with a new merging context (line 5), if not already
set, initializing its loop, set of states, and liveness counter. We then
associate the states st and sf (forked at line 7) with the merging
contextmc , add them tomc , update the liveness counter, and finally
update the searcher’s worklist (lines 8-13). When the execution
of s reaches a loop exit of a loop l that matches the loop of the
associated merging context (line 15), we decrement the liveness
counter (line 16). If after that, the liveness counter is zero, i.e., all
the states of the merging contextmc finished executing the loop,
we finally perform the merging: As the merging of two symbolic
states is allowed only when their program counter points to the
same location, we first split the states to groups based on the loop
exit that was taken in each state (line 18), and then merge each
group of states separately (line 20). Finally, we reset the merging
context of the merged statem (line 21), and update the engine’s
searcher (line 22).

Algorithm 2 depicts the merging procedure which accepts as
parameters the merging context and the set of states to merge. First,
we compute the common constraints of the input states (line 2),
which can be also given by the path constraints of the state that
initialized the merging context. Then, we extract for each state si
the suffix constraints pc ′i (line 3), i.e., the constraints of si .pc that
does not appear in c , which are the constraints that were added by
si during the execution of the loop till its exit. The constraints of
the merged state are set to the conjunction of c and the disjunction
of all the suffix constraints (line 4). For each variable v , its value in
the merged state is set to an ite expression (line 5), which results
in the value si .m(v) if si .pc holds. The heap merging (lines 6-12) is
performed assuming that the input states are heap-compatible, i.e.,
for every memory object in one state there is a memory object in

1The lines marked in grey will be discussed later and should be ignored for now.

another state which has the same base address, size, and capacity.
Under this assumption, we group the memory objects according
to the base addresses (line 7), such that each group corresponds to
a specific memory object with ai being the solver array tracking
the contents of that memory object in si . For each such group,
we first create a solver array (line 8) that will be used later to
construct the merged memory object. Then for every offset up to
the corresponding capacity, we merge the values stored at that
offset separately (line 10) and update the new solver array (line 11).
Finally, we add the resulting memory object to the heap (line 12).

As an example, consider again the program from Figure 3 whose
execution tree is given in Figure 4. Once the allocation at line 3
occurs, the symbolic expression n is marked as tainted. Later when
the first iteration of the loop is executed (line 4), the loop is detected
as symbolic-size dependent, since the branch condition 0 < n is
tainted. The loop at line 4 has two loop exits (lines 6,9), so once the
exploration of the loop is completed, the states are split into two
merging groups. The first group contains only the state s3 whose
path constraints are n > 0 ∧ z = 0, and the second group contains
the rest of the states, i.e., {s1, s5, s7, s8}. In the merged state of the
second group, for example, the paths constraints will be:

(n ≤ 3) ∧ (c1 ∨ c5 ∨ c7 ∨ c8)

where:
c1 := (n ≤ 0)

c5 := (n > 0 ∧ z , 0 ∧ n ≤ 1)

c7 := (n > 0 ∧ z , 0 ∧ n > 1 ∧ n ≤ 2)

c8 := (n > 0 ∧ z , 0 ∧ n > 1 ∧ n > 2)

and assuming that the memory object of p is (b,n, 3, a), the value
of p[2], for instance, will be:

ite (c1, e, ite (c5, e, ite (c7, e, 2)))

where e = select (a, 2) is an uninitialized solver array value.
Once state merging has been applied, we were able to reduce

the number of explored paths. However, that resulted in a more
complex representation of themerged states, due to the introduction
of ite and disjunctive terms. As the representation complexity has
a direct impact on the complexity of the queries, and therefore on
the performance of the solver itself, the merged states should be
represented as compactly as possible.

3.3 Optimizations

When we merge multiple symbolic states, we generate ite and
disjunctive terms that may contain duplicate or redundant terms.
This happens, for example, in the program from Figure 3, when we
merge the states from the merging group that corresponds to the
loop exit at line 9. Let ci be again the constraints that were added
to the state si during the execution of the loop till its exit. Then
the path constraints of the resulting merged state is given by (as
mentioned in Section 3.2):

(n ≤ 3) ∧ (c1 ∨ c5 ∨ c7 ∨ c8)

Note that there are conditions that unnecessarily repeat across the
different constraints: For example, the condition n > 0 ∧ z , 0
appears in the last three disjuncts (c5, c7, and c8), and the condition
n > 1 appears in both c7 and c8. Also note that the disjunction of

1193

A Bounded Symbolic-Size Model for Symbolic Execution ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Algorithm 1 Loop Merging Algorithm.

1: function on-branch(s, c, l)
2: if is-tainted(c) then

3: mc ← s .mc

4: if mc = null then

5: mc ← {.loop : l , .states : {s}, .counter : 1}

6: mc .root ← s .n ← {.s : s, .c : true, .l = null , .r = null }

7: st , sf ← fork(s, c)

8: st .mc ←mc, sf .mc ←mc

9: mc .states ← (mc .states \ {s}) ∪ {st , sf }

10: mc .counter ←mc .counter + 1

11: s .n.l ← st .n ← {.s : st , .c : c, .l = null , .r = null }

12: s .n.r ← sf .n ← {.s : sf , .c : ¬c, .l = null , .r = null }

13: worklist ← (worklist \ {s}) ∪ {st , sf }

14: function on-loop-exit(s, l)
15: if s .mc .loop = l then

16: mc .counter ←mc .counter − 1

17: if s .mc .counter = 0 then

18: дroups ← group-by-loop-exit(mc .states)

19: for д ∈ дroups do

20: m ← merge(s .mc,д)

21: m.mc ← null

22: worklist ← (worklist \ д) ∪ {m}

Algorithm 2Merging Algorithm.

1: function merge(mc, {s1, ..., sn })
2: c ← common-constraints([si .pc]

n
i=1)

3: [pc ′i]
n
i=1 ← [suffix-constraints(si .pc, c)]

4: pc ← c ∧ merge-constraints([pc ′i]
n
i=1)

5: m ← {v 7→ merge-values([si]
n
i=1, [pc

′
i]
n
i=1, {si 7→ si .m[v]})}

6: h ← ∅

7: for (b,σ ,k, [ai]
n
i=1) ∈ group-by-address({si }

n
i=1) do

8: a← new-smt-array()

9: for 0 ≤ j < k do

10: e ← merge-values([si]
n
i=1, [pc

′
i]
n
i=1, {si 7→ select (ai , j)})

11: a← store(a, j, e)

12: h ← h ∪ (b,σ ,k, a)

13: return {.pc : pc, .m :m, .h : h}

14: function merge-constraints([ci]ni=1)
15: return c1 ∨ ... ∨ cn

16: function merge-values([si]ni=1, [ci]
n
i=1,m)

17: return ite (c1,m[s1], ite (..., ite (cn−1,m[sn−1],m[sn])))

the last three constraints (c5 ∨ c7 ∨ c8) is actually equivalent to
(n > 0 ∧ z , 0), since:

(n ≤ 1) ∨ (n > 1 ∧ n ≤ 2) ∨ (n > 1 ∧ n > 2) ≡ true

Similar redundancies occur when we merge the contents of the
memory object allocated at line 3.

Instead of optimizing on top of the expressions resulting from
the original merging algorithm, we generate them in an equivalent

and reduced form beforehand. To do so, we use the execution tree
constructed during the symbolic evaluation of the loop in a given

merging context. Each node in the execution tree is either a leaf
node that corresponds to a final state reaching a loop exit, or an
intermediate node that has exactly two successors corresponding
to the true and false sides of a branch. In addition, each node is
annotated with a corresponding state and the constraint because of
which that state was forked, where the constraint of the root node
is initialized to true. In the execution tree from Figure 4, the leaf
and intermediate nodes are marked in grey and white, respectively.

To support the construction of the execution tree in a given
merging context, we extend Algorithm 1 with the lines marked in
grey. In line 6 we initialize the node of the initial state, which is
set to the root of the execution tree. In lines 11 and 12 we extend
the execution tree by setting the children of the node associated
with s to the nodes of st and sf , each of which is annotated with
the appropriate condition c and ¬c , respectively.

Our constraint merging procedure is given in Algorithm 3. The
procedure merge-constraints-opt receives a merging group д
from the given merging context and a node n from the execution
tree. If n is a leaf node, then we return its annotated condition if
its state belongs to д (lines 2-3), and f alse otherwise. If n is an
intermediate node, then we recursively generate the constraints
cl and cr for the children nodes (lines 4-5). If f does not hold, i.e.,
n’s sub-tree contains at least one state that does not belong to д,
then we return the conjunction of the current condition with the
disjunction of the children’s constraints (line 10). If f holds, then
we are in the case where n’s sub-tree contains states from д only.
The disjunction of the constraints corresponding to any complete
sub-tree is always equivalent to true , therefore the term cl ∨ cr can
be further simplified to true (line 8). Note that the current condition
n.c is always added only once, thus avoiding duplicate occurrences.
Also note that if cl (or cr) is f alse , i.e., the sub-tree originating from
n.l (or n.r) does not contain states from д, then only the condition
cr (or cl) is propagated.

As an example, consider the application of Algorithm 3 with д as
the merging group {s1, s5, s7, s8}, and n as the root of the execution
tree from Figure 4. Without the simplification at line 8, the resulting
constraint will be:

(n ≤ 0) ∨ (n > 0 ∧ z , 0 ∧ (n ≤ 1 ∨ (n > 1 ∧ (n ≤ 2 ∨ n > 2))))

which already reduces the size of the constraint fromO (n2) toO (n).
When applying the simplification at line 8, the constraint is further
reduced to:

(n ≤ 0) ∨ (n > 0 ∧ z , 0)

Our value merging procedure merge-values-opt is given in
Algorithm 4. It receives as parameters a merging group д from the
given merging context, a node n from the execution tree, and a
mappingm which associates a state with the value of the target
memory location (variable or heap object). For leaf nodes we return
the value associated with n.s if the latter exists in the mapping, and
null otherwise (lines 2-3). For intermediate nodes, if a merged value
is available only in one of the children (lines 9,11), then we pass on
that value. Otherwise, we handle the case in which both vl and vr
are available, where we return an ite expression choosing between
the values vl and vr (line 13).

1194

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece David Trabish, Shachar Itzhaky, and Noam Rinetzky

Algorithm 3 Optimized constraint merging

1: function merge-constraints-opt(д,n)
2: if is-leaf(n) then

3: return true,n.c if n.s ∈ д else f alse, f alse

4: fl , cl = merge-constraints-opt(д,n.l)

5: fr , cr = merge-constraints-opt(д,n.r)

6: f ← fl ∧ fr
7: if f then

8: c ← n.c

9: else

10: c ← n.c ∧ (cl ∨ cr)

11: return f , c

Algorithm 4 Optimized value merging

1: function merge-values-opt(д,n,m)
2: if is-leaf(n) then

3: returnm[n.s] if n.s ∈ д else null

4: vl = merge-values-opt(д,n.l ,m)

5: vr = merge-values-opt(д,n.r ,m)

6: if vl = null ∧vr = null then

7: v ← null

8: else if vl = null ∧vr , null then

9: v ← vr
10: else if vl , null ∧vr = null then

11: v ← vl
12: else

13: v ← ite (n.l .c,vl ,vr)

14: return v

For example, when we use the original procedure to merge the
value of p[2] for the merging group {s1, s5, s7, s8}, we get:

ite (c1, e, ite (c5, e, ite (c7, e, 2)))

assuming that p’s memory object is (b,n, 3, a) and e = select (a, 2).
When applying the optimized procedure, we get:

ite(n ≤ 0, e, ite (n ≤ 1, e, ite (n ≤ 2, e, 2)))

which again reduces the size of the expression from O (n2) to O (n).
To incorporate Algorithms 3 and 4 in Algorithm 2, we replace

the original invocation of merge-constraints at line 4 with:

pc ← c ∧ merge-constraints-opt({si }
n
i=1,mc .root)

and replace the invocations of merge-values at lines 5 and 10 with:

m ← {v 7→ merge-values-opt({si }
n
i=1,mc .root , {si 7→ si .m[v]})}

and

e ← merge-values-opt({si }
n
i=1,mc .root , {si 7→ select (ai , j)})

respectively.
Algorithms 3 and 4 are search heuristic independent, since the

structure of the execution tree is derived only from the program.
The time (and space) complexity of these algorithms is linear in the
number of nodes, i.e., linear in the number of states to be merged.
This is an improvement over Algorithm 2, where the worst case
complexity is quadratic.

3.3.1 Correctness. Without loss of generality, we assume that the
initial path constraints c = true , and show that Algorithms 3 and 4
correctly construct the merged constraints and values:

(a) |= merge-constraints([pci]
k
i=1) ↔

merge-constraints-opt
(

{si }
k
i=1, r

)

(b)
(

∨

i pci
)

|=

merge-values
(

[si]
k
i=1, [pci]

k
i=1,m

)

=

merge-values-opt
(

{si }
k
i=1, r ,m

)

where si is a leaf state in the execution tree, pci denotes the path
constraints of si ,m associates a state si to a corresponding value in
that state, and r is the root of the execution tree.

Proof sketch. A fork creates two states whose path constraints
differ by one negation, i.e., pc1 = r .c ∧ ¬φ and pc2 = r .c ∧ φ.
Going forward, each state will have accumulated some additional
constraints: pc ′1 = r .c∧¬φ∧ψ1 and pc

′
2 = r .c∧φ∧ψ2. The standard

merging algorithm merge-constraints will merge them as:

pc ′1 ∨ pc
′
2 = (r .c ∧ ¬φ ∧ψ1) ∨ (r .c ∧ φ ∧ψ2)

which is equivalent, by reordering and distributivity, to:

r .c ∧
(

(¬φ ∧ψ1) ∨ (φ ∧ψ2)
)

which is whatmerge-constraints-optwould generate in this case,
where cl ≡ ¬φ ∧ψ1 and cr ≡ φ ∧ψ2. This shows that the results
are equivalent for the first forking point. If there are subsequent
forks, the argument for them is identical, therefore, by induction,
the same holds for the merged constraints generated for the entire
merging context.

The argument regarding merge-values-opt is analogous. The
path constraints {pci }ni=1 are disjoint (i.e., |= ¬(pci ∧pc j), for i , j),
so the following holds for each 1 ≤ i ≤ n:

pci |= merge-values
(

[si]
k
i=1, [pci]

k
i=1,m

)

=m[si]

Similarly, we assume that the paths from the root to every si also
represent disjoint conditions. Let:

π (si ,n) :=
∧

{n′.c | n′ on path n { si }

We now show that for every descendant n of r :

π (si ,n) |= merge-values-opt
(

{si }
k
i=1,n,m

)

=m[si]

This can also be shown by induction. For the base case, i.e., n.s = si ,
merge-values-opt returnsm[n.s] =m[si] (line 3). Otherwise n is
an intermediate node, and we assume without loss of generality
that the path goes through the left node, i.e., n.l .c holds, then by
the induction hypothesis:

π (si ,n.l) |= merge-values-opt
(

{si }
k
i=1,n.l ,m

)

=m[si]

By definition, it holds that π (si ,n) ≡ n.l .c ∧ π (si ,n.l), so the
return value of merge-values-opt({si }ki=1,n,m), which is vl or
ite(n.l .c,vl ,vr), can be simplified to vl as n.l .c holds. Note that vl
is exactly merge-values-opt({si }

k
i=1,n.l ,m), which completes the

induction step. Since by construction, pci ≡ π (si , r), it follows that:

pci |= merge-values
(

[si]
k
i=1, [pci]

k
i=1,m

)

=

medge-values-opt
(

{si }
k
i=1, r ,m

)

and from that (b) follows trivially.

1195

A Bounded Symbolic-Size Model for Symbolic Execution ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

3.4 Limitations

The size bound of a symbolic-size object, i.e., the maximal concrete
value of its symbolic size, can be less than its specified capacity. In
such cases, if we read a value at a symbolic offset from this object,
it will contain array updates (store expressions) over offsets that
will be never accessed in the future. This does not affect the read
value, but leads to a more complex expression which might have a
negative effect on the solver. For example, consider the following
code snippet:

1 size_t n; // symbolic

2 char *p = calloc(n, 1); // capacity is 3

3 if (n > 0 && n < 3) {

4 p[n - 1] = 17;

5 if (p[0] == 0) {

6 ...

7 }

8 }

Assuming that the allocated object at line 2 is (b,n, 3, a), the value
of p[0] at line 5 will be:

select (store(store(store(store(a, 0, 0), 1, 0), 2, 0),n − 1, 17), 0)

The branch at line 3 forces the constraint 1 ≤ n ≤ 2, so the array
update that writes 0 at offset 2 becomes irrelevant as the actual size
bound is 2. To overcome this, one needs to know the actual bound
of a given symbolic size, which is not straightforward as it requires
generating additional expensive solver queries.

The approaches presented in Section 3.2 and Section 3.3 have
the known limitations of state merging: In practice, the number of
states that can be merged while keeping the analysis efficient is
limited, as complex representations affect both memory usage and
constraint solving.

4 IMPLEMENTATION

We implemented our symbolic-size model on top of KLEE [14], a
state-of-the-art symbolic executor operating on LLVM bitcode [27].
Our extension of KLEE is configured with LLVM 7.0.0 and STP
2.3.3 [19]. Originally when a memory object is allocated with a
symbolic size, KLEE concretizes the size expression and performs
the allocation with the resulting concrete size. We modified that
part such that instead of concretizing, we allocate a symbolic-size
memory object (as described in Section 3.1), while its capacity is
given by the user via a command-line option. If the user-specified
capacity is too low, i.e., the symbolic size is always greater than the
capacity under the path constraints of the corresponding symbolic
state, then the capacity is gradually increased until that constraint
becomes feasible. In addition, we modified the relevant parts which
handlememory access operations and pointer resolution, in order to
handle appropriately symbolic-size memory objects. We avoid state
merging when the number of states exceeds a certain threshold,
as applying it in such cases leads to high memory usage and poor
performance of the solver. We disable state merging in loops which
contain function calls, as the number of explored states in such
cases is typically too high.

5 EVALUATION

In our experiments, we evaluate the concrete-size and the symbolic-

size models in the context of API testing and whole-program testing.

5.1 Experimental Setup

Vanilla KLEE concretizes symbolic size expressions using the solver,
which means that the user has little control over the resulting
concretized size value. Throughout experimentation, we observed
that such concretization strategy typically results in small size
values (i.e., 0 or 1), which leads to fast analysis times with a rather
low code coverage. Therefore, we chose a more competitive baseline
mode (Base) which concretizes the symbolic size to its maximal
feasible value with respect to the specified capacity.

The other modes we use in the evaluation are denoted as range
modes, where all the possible sizes of a given symbolic-size object
are considered, resulting in a complete exploration with respect to
the specified capacity. We compare between several range modes:
Under the concrete-size model, we use the eager forking mode
(ForkEager) which forks at allocation time for each feasible value
of the symbolic size expression. Under the symbolic-size model, we
use the lazy forking mode (ForkLazy) described in Section 3.1, and
the two merging modes (SM and SMOpt) described in Section 3.2
and Section 3.3, respectively.

We run our experiments on several machines with Intel i7-6700,
32 GB of RAM, and Ubuntu 16.04 as the operating system. We
make our implementation 2 and the associated artifact 3 available
as open-source.

5.2 API Testing

The benchmarks used in this experiment are: libtasn1 [5] v4.16.0
(15K SLOC), libpng [7], v1.6.37 (56K SLOC), and libosip [6] v5.2.0
(19K SLOC). The libtasn1 library is used for processing data in the
Abstract Syntax Notation One (ASN.1) format, the libpng library is
the official PNG image file format reference, and the libosip library
is used for parsing and building messages for the SIP protocol. We
chose these libraries as they are challenging for symbolic execution
and contain many API’s that depend on variable-size objects.

In each benchmark we focused on API’s whose input can be
modeled using symbolic-size objects, i.e., arrays and strings. We
manually constructed a test driver for each such API, based on the
available documentation and the various usage examples found in
the corresponding library.

We analyzed a total number of 78 API’s across the different
benchmarks: 17 API’s from the decoding and encoding modules in
libtasn1, 13 API’s from the pngread and pngwrite modules in libpng,
and 48 API’s from the osipparser2 module in libosip.

For each API, we run KLEE in the five modes (Base, ForkEager,
ForkLazy, SM, and SMOpt) using the deterministic DFS search
heuristic, with a one hour time limit and a 4GB memory limit. In
each run we check the following metrics: analysis time, number of
solver queries, line coverage computed with GCov [3], and number
of explored paths.

5.2.1 Empirical Validation. In API’s where all the range modes
achieved full exploration, i.e., completed the analysis before the
timeout, we validated that the achieved coverage is identical across
these modes. Note that the Basemode is not considered here, as it is
generally less complete in terms of exploration, making a coverage

2https://github.com/davidtr1037/klee-symsize
3https://doi.org/10.6084/m9.figshare.14724453

1196

https://github.com/davidtr1037/klee-symsize
https://doi.org/10.6084/m9.figshare.14724453

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece David Trabish, Shachar Itzhaky, and Noam Rinetzky
se
co
nd
s

0

20000

40000

60000

libtasn1 libpng libosip

Base ForkEager ForkLazy SM SMOpt

Figure 5: Total analysis time.

tim
eo
ut
s

0

5

10

15

libtasn1 libpng libosip

Base ForkEager ForkLazy SM SMOpt

Figure 6: Number of timeouts.

A

P
I

0

10

20

30

libtasn1 libpng libosip

Base ForkEager ForkLazy SM SMOpt

Figure 7: Analysis time scoreboard.

based comparison meaningless. As the optimizations described in
Section 3.3 must not affect the exploration during the analysis, we
additionally validated that the number of explored paths in the SM
and SMOpt modes is indeed identical.

5.2.2 Analysis Time. The Base mode uses concretization to handle
symbolic-size allocations, therefore it can’t explore more paths than
ForkEager and ForkLazy, which are also forking-based approaches.
As a result, the analysis time with Base is expected to be lower
compared to ForkEager and ForkLazy. The SM and SMOpt modes
use state merging, which might result in less paths compared to
the other modes and faster analysis even compared to Base.

Figure 5 shows for each benchmark and mode the total time
required to analyze all the API’s. The Base mode was the fastest in

SM (seconds)

S
M

O
pt

 (s
ec

on
ds

)

0

1000

2000

3000

4000

0 1000 2000 3000 4000

Figure 8: Analysis times of SM vs SMOpt (in seconds).

libpng but still slower than SMOpt in libtasn1 and libosip, despite
its less complete handling of symbolic-size allocations. Among the
range modes, SMOpt had the lowest analysis time across all the
benchmarks. The slowest mode among all themodes was ForkEager,
mainly due to its early forking mechanism that takes place when
symbolic-size objects are allocated.

As we analyze each API with a timeout of one hour, we also
examine the cases which resulted in a timeout. Figure 6 shows for
each benchmark and mode the number of API’s in which a timeout
occurred. The merging modes had the lowest number of timeouts
across all the benchmarks, and in libtasn1 and libpng the Basemode
had the same number of timeouts as the merging modes. In each of
the benchmarks, the highest number of timeouts occurred in the
ForkEager mode.

We now examine the results of 55 API’s in which the analysis
completed before the timeout at least in one of the modes. Figure 7
shows for each benchmark and mode the number of API’s in which
a given mode had the fastest analysis time. The highest score was
achieved by SMOpt in libtasn1 and libpng, and by Base in libosip.
Note that in libosip, ForkEager and SMOpt had relatively high
scores as well.

A more detailed comparison between the two merging modes
is given in the scatter plot from Figure 8, where the x-axis and
y-axis represent the analysis times for SM and SMOpt, respectively.
Across all the API’s, the speedup of SMOpt relatively to SM varies
between 0.9×-4.4×, and the average is 1.6×. The SMmode was faster
than the SMOpt mode only in one case, where the difference was
less than 5 seconds.

5.2.3 Solver Queries. In addition to comparing the analysis times,
we also compare the number of solver queries generated by each
of the modes. Here, we report the number of queries that actually
reached the solver, i.e., those that were not handled by any of the
constraint solving heuristics in KLEE (e.g., query caching). Note
that here we consider 39 API’s in which all the modes reached full
exploration, as otherwise the comparison would be meaningless.

The lowest number of queries was generated by the SMOpt

mode, with an average of 3130 queries per API. The number of
queries with SM was slightly higher, and as for the other modes,
the relative increase in the average number of queries with respect
to SMOptwas 17% in Base, 70% in ForkLazy, and 178% in ForkEager.
When comparing between the two merging modes SM and SMOpt,

1197

A Bounded Symbolic-Size Model for Symbolic Execution ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
co

ve
ra

ge
 (%

)

0

10

20

30

40

50

libtasn1 libpng libosip

Base ForkEager ForkLazy SM SMOpt

Figure 9: Total line coverage.

A

P
I

0

5

10

15

libtasn1 libpng libosip

Base ForkEager ForkLazy SM SMOpt

Figure 10: Line coverage scoreboard.

the number of queries is roughly the same. The slight differences
between these modes originates from the different representation
of the merged states, which affects the various heuristics used in
KLEE’s solver chain.

5.2.4 Coverage. Figure 9 shows for each benchmark and mode
the total coverage generated by the test cases of all the API’s. In
libtasn1, all the modes achieved similar results, with the ForkEager
mode having a slight advantage. In libpng, the highest coverage
was achieved by the merging modes, with an improvement of 37%
compared to ForkLazy, 42% compared to Base, and 160% compared
to ForkEager. In libosip, the highest coverage was achieved by Base

and ForkLazy, with an improvement of 25% and 26% compared to
ForkLazy and the merging modes, respectively.

We now discuss in more detail the results of 39 API’s in which
at least one of the modes had a timeout. Figure 10 shows for each
benchmark and mode the number of API’s in which a given mode
achieved the highest coverage compared to other modes. In libtasn1

and libpng, the highest scores were obtained by the ForkEagermode
and the merging modes, respectively. In libosip, the ForkEagermode
had the highest score, while the other modes had the same scores.

In 24 out of the 39 API’s mentioned above, SM and SMOpt had
a timeout and achieved the same coverage. To further evaluate the
results in these cases with those two modes, we use an additional
evaluation metric: path coverage. Note that comparing between
these two modes using this metric makes sense: The only difference
between the merging modes is the representation of merged states,
therefore the exploration order of the search space remains identical.

api

pa
th

s
ra

tio
 (S

M
O

pt
 /

S
M

)

0

25

50

75

100

Figure 11: Increase in path coverage (%) of SMOpt vs. SM in

cases where line coverage is identical.

Note that this metric cannot be used to compare the other modes
with the merging modes, since their exploration differs due to the
introduction of state merging.

Figure 11 shows the increase in the number of explored paths
with SMOpt relatively to SM. The increase in path coverage is
14% on average and varies between -1% and 116%. In the 5 cases
were SM explored more paths than SMOpt, the improvement was
negligible and resulted from the non-determinism of the timeout
mechanism in KLEE, which may lead to slightly different running
times under the same timeout configuration.

In the 39 API’s in which all the modes reached full exploration,
the Base mode achieved the same coverage as the other range
modes in all the cases except for two cases in libtasn1.

5.2.5 Merging Complexity. The main bottleneck of state merging
comes from ite expressions and disjunctive constraints introduced
by the merging, which propagate to the queries making constraint
solving harder. We provide an additional comparison between the
two merging modes (SM and SMOpt) based on the representation
complexity of the states, i.e., the complexity of the constraints and
the memory values resulting from the merging. In order to have a
meaningful comparison, we compare only the results of 54 API’s in
which both of the modes reached full exploration.

Figure 12 shows for each API the ratio between the total size of
all the merged constraints between SM and SMOpt4 . The size of
the constraints with SMOpt is never greater than in SM, and the
average reduction is 886× (60× without asn1_decode_simple_ber’s
44657× outlier). Figure 13 shows for each API the ratio between
the total size of all the merged values, i.e., variables and heap
memory objects, between SM and SMOpt. Here again, we can
observe a clear advantage for the SMOpt mode, where the average
reduction with SMOpt compared to SM is 1420× (174× without
asn1_decode_simple_ber’s 67479× outlier).

5.2.6 Case Study: libosip. In libtasn1 and libpng, themergingmodes
performed well compared to other modes, but in libosip, these
modes were less efficient. We now characterize the cases where
the merging modes performed better or worse compared to other
modes. A scenario where merging worked better, occurs when
we have multiple independent operations on different inputs. On
the other side, a scenario in which merging worked worse, occurs
when we have multiple subsequent operations on the same input

4 The size of an expression is defined by the number of nodes in its AST representation.

1198

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece David Trabish, Shachar Itzhaky, and Noam Rinetzky

api

co
ns

tra
in

ts
 s

iz
e

ra
tio

 (S
M

 /
S

M
O

pt
)

1

10

100

1000

10000

Figure 12: Decrease in constraints complexity.

api

m
em

or
y

si
ze

 ra
tio

 (S
M

 /
S

M
O

pt
)

0.1

1

10

100

1000

10000

Figure 13: Decrease in memory complexity.

where each operation depends on the previous ones. Two API’s
that demonstrate these two scenarios are sdp_messsage_to_str and
osip_message_parse. In the first case, we receive a struct describing a
SDP message and translate it to a string representation. This struct
contains several fields which are strings as well, and the translation
is performed on each of them independently. In this case, SMOpt

for example, completes the analysis in 39 seconds, while Base runs
for 166 seconds, ForkLazy for 393 seconds, and ForkEager hits the
timeout of one hour. In the second case, we receive a symbolic-size
string, parse it, and return a struct describing the parsed message.
Here, we have a chain of strchr invocations on the input, where each
invocation depends on the previous one. The loop inside strchr is
merged, as it is detected as size dependent, so the next call to strchr
starts with a more complex state representation than the previous
one. In this case, Base and ForkEager completes the analysis in 2
seconds, ForkLazy in 21 seconds, while in SM and SMOpt it takes
454 and 271 seconds, respectively.

5.2.7 Found Bugs. Throughout our experiments, we found 5 bugs
in two of our benchmarks: libosip and libtasn1. In libosip, we found
3 out-of-bound read bugs and one integer underflow bug, all of which
were triggered by symbolic-size objects, strings in this case. Table 1
shows the API’s in which the bugs were found, the corresponding
triggering inputs, and the range of input sizes under which the bug
is reachable. We reported the bugs and they were confirmed and
fixed by the official maintainers of libosip [1, 2]. Note that the Base
mode misses some of these bugs when the capacity is too high or
too low, due to its single-size out-of-bound reasoning. In libtasn1,
we found another out-of-bound read bug in the ETYPE_OK macro,

Table 1: Crashing inputs for the libosip bugs

API Input Size Range

osip_message_set_via ’/\x01/ ’ ≥ 5

osip_uri_parse_headers ’=’ ≥ 2

osip_uri_parse_headers ’’ = 1

osip_uri_parse_params ’’ = 1

which is used in several API’s in the library. The bug happens due to
an incorrect range-check of an array index, which can be triggered
with a specific element type value. In this case, the bug was not
directly triggered by a symbolic-size object, although certain size
values of some API parameters make this bug unreachable.

5.3 Whole-Program Testing

As a benchmark for whole-program testing, we chose 99 programs
from GNU Coreutils [4]. With vanilla KLEE, these programs are
analyzed with symbolic command-line arguments (argv) and files
(stdin, stdout, etc.). Every such symbolic input is modeled as a
concrete-size object with a user-specified size. Symbolic-size alloca-
tions are not common in GNU Coreutils, so in order to have a more
insightful evaluation in our context, we model those inputs using
symbolic-size objects. Note that the Basemode with such modeling
behaves like vanilla KLEE with the original modeling.

In this experiment, we run each program in the five modes with
a timeout of one hour, and measure the analysis time and the line
coverage. We had only 5 programs in which not all the modes had
a timeout: In two cases all the modes terminated within a second
except for the ForkEager mode. In the other 3 cases the merging
modes terminated faster compared to other modes with an average
speedup of 3.0× compared to Base, 3.3× compared to ForkLazy, and
151.8× compared to ForkEager. In the other 94 programs where all
the modes had a timeout, the average coverage with the different
modes varies between 28.3%-31.9%, where the best and worst result
was achieved by ForkEager and ForkLazy, respectively. The highest
coverage was achieved in 38 cases with ForkEager, in 35 cases
with Base, in 24 cases with SMOpt, in 24 cases with SM, and in 19
cases with ForkLazy. Note that in some of the cases several modes
achieved the same coverage.

The two merging modes achieved identical coverage in all but
16 cases (out of 94). In 3 of these cases, SMOpt generated more
test cases and achieved higher coverage. In the rest 13 cases, both
modes generated the same number of test cases. However, some of
the test cases were generated differently due to the difference in
the representation of the constraints with the two modes, which
eventually resulted in slightly different coverage. There was no
significant difference between these two modes in terms of path
coverage, where SMOpt had a slight advantage over SM.

5.4 Discussion

We evaluated several approaches that consider a range of object
sizes: ForkEager, ForkLazy and the two merging modes. There is
a tradeoff here between the number of explored paths and the
complexity of the resulting path constraints: The eager approach
has the highest number of paths and the least complex constraints,

1199

A Bounded Symbolic-Size Model for Symbolic Execution ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

the merging approach has the lowest number of paths and the most
complex constraints, and the lazy approach lies between them.

We believe that this classification allows to explain the results
of our experiments: We experiment with programs that operate on
both textual (libosip and GNU Coreutils) and binary (libtasn1 and
libpng) inputs. The character-by-character sequential processing of
strings requires considering every size in the range, thus giving an
advantage to the eager approach. In contrast, the relatively higher
granularity of binary data processing, i.e., accessing larger data
chunks such as integers, filters out some irrelevant size values, thus
giving the advantage to the other range modes (ForkLazy, SM, and
SMOpt). This difference becomes even more significant when the
programs operates on multiple symbolic-size objects. Furthermore,
we model strings by assuming a null-terminator at the last byte,
while permitting its occurrence earlier in the buffer. This allows the
baseline approach (Base) to effectively consider a range of logical
string sizes, and achieve similar coverage to the range modes.

6 RELATED WORK

In the segment-offset-plane memory model [41], a memory object
has its own unique address space, i.e., a segment, and an address
expression is represented as a pair consisting of a segment identifier
and an offset (within that segment). This model supports supposedly
unbounded symbolic-size allocations, using a the two-dimensional
address space where the non-overlapping property (mentioned in
Section 2) is naturally supported. However, this model explicitly
encodes each read and write operation, so the analysis will not
scale with large enough objects due to the expected high memory
consumption. Therefore we believe that the advantage of this model
in supporting unbounded allocations is only theoretical. Moreover,
to support fat pointers, this model encodes expressions using a
more complex language, which may incur additional overhead.
Šimáček [39] adopt the memory model proposed by [41] to support
symbolic-size allocations with KLEE, thus inheriting the limitations
discussed above. These two works don’t address the problem of
additional forking introduced by symbolic-size expressions, and
particularly, that of symbolic-size dependent loops.

The segmented memory model [24] is an approach for handling
symbolic pointers that have multiple resolutions: The memory is
partitioned into segments using static pointer analysis such that
every pointer is guaranteed to refer to at most one segment, thus
avoiding any forks when symbolic pointers are dereferenced. Our
symbolic-size model can be easily integrated with such model since
every allocated object has a finite capacity. Technically, the only
change required is to call the allocation function with the capacity
of the allocated object instead of its size (Algorithm 3 from [24]).

Sinha [40] simplifies ite expressions using rewrite rules, which
are not expressive enough to achieve the effect of the optimizations
discussed in Section 3.3. The same work also proposes a technique
for generalizing ite expressions generated during the analysis of
loops, which generates parametric expressions based on pattern
matching. This approach could be used in our context as well, but it
can be applied only when there exists a linear dependency between
the symbolic variables, which is not always the case.

Path merging [22, 26, 36] has been used in the past to scale
symbolic execution. Kuznetsov et al. [26] propose dynamic state
merging with a query count estimation heuristic that decides when

merging should be applied, andMultiSE [36] proposes an alternative
approach for state representation. Veritesting [9, 37] is another
path merging technique which statically summarizes code regions.
JavaRanger [37] extends veritesting for Java programs to support
dynamically dispatched methods, by using the runtime information
available during the analysis. The works mentioned above have
no support for symbolic-size objects, and statically summarizing
code regions that contain loops is challenging, even with the aid of
runtime information.

Loop-extended symbolic execution [35] is a technique that can
be used to summarize input-dependent loops. It uses static analysis
to infer linear relations between variables and trip count variables
which track the number of iterations in the loop. Our approach is
more dynamic in nature and does not depend on static analyses.
Godefroid et al. [21] propose a dynamic approach that can infer
partial invariants in input-dependent loops. This approach can be
applied only in loops where all the variables depend on induction
variables, and only when the loop iteration is executed at least
three times. In contrast, our approach has no restrictions on the
loop variables and the number of iterations. Both of these works
provide summaries only for scalar variables, so clearly does not
support symbolic-size memory objects.

Anand et al. [8] model symbolic-size arrays as part of the lazy
initialization algorithm. Here, arrays are modeled as linked lists
with symbolic length, where each node has a symbolic index and a
symbolic value. An abstraction-based subsumption is used for state
pruning and for bounding the number of initialized array cells, thus
potentially leading to missed feasible behaviors. Deng et al. [18]
model symbolic-size arrays similarly to [8], but place a bound on
the number of initialized array cells instead of using an abstraction-
based pruning. These works [8, 18] don’t handle symbolic size
allocations (e.g., using malloc) that occur directly in the program.
In contrast, UC-KLEE [34] supports symbolic-size arrays in its
lazy initializing algorithm as well as allocation of symbolic-size
objects [33]. Essentially, it uses an approach similar to the model
described in Section 3.1, where every symbolic-size object has a user-
specified upper bound on its size. None of the aforementionedworks
investigate the tradeoffs between different approaches for enabling
symbolic-size allocations, or explore strategies for managing the
symbolic state space resulting from size-dependent loops.

7 CONCLUSION AND FUTUREWORK

We proposed a bounded symbolic-size model which addresses the
problem of variable-size inputs in symbolic execution.We evaluated
our model in terms of performance and test case generation, and
found previously unknown bugs.

Finding more efficient state representations, for example, by
using different logic fragments, can further improve the merging
approach. To cope with the incompleteness of our modeling, one
can try to adapt the capacity using static or dynamic techniques.
Efficiently handling unbounded objects remains an open problem.

ACKNOWLEDGEMENTS

This research was funded by the Israel Science Foundation (ISF)
grant No. 1996/18, 243/19 and 2740/19, and by the United States-
Israel Binational Science Foundation (BSF) Grant No. 2018675.

1200

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece David Trabish, Shachar Itzhaky, and Noam Rinetzky

REFERENCES
[1] 2021. https://git.savannah.gnu.org/cgit/osip.git/commit/?id=ef6497.
[2] 2021. https://git.savannah.gnu.org/cgit/osip.git/commit/?id=2f0380.
[3] 2021. GCov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[4] 2021. GNU Coreutils. https://www.gnu.org/software/coreutils/.
[5] 2021. GNU libtasn1. https://www.gnu.org/software/libtasn1/.
[6] 2021. GNU oSIP. https://www.gnu.org/software/osip/.
[7] 2021. libpng. http://www.libpng.org/pub/png/libpng.html.
[8] Saswat Anand, Corina S Păsăreanu, and Willem Visser. 2006. Symbolic execution

with abstract subsumption checking. In International SPIN Workshop on Model
Checking of Software. Springer, 163ś181. https://doi.org/10.1007/11691617_10

[9] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.
Enhancing Symbolic Execution with Veritesting. In Proc. of the 36th International
Conference on Software Engineering (ICSE’14) (Hyderabad, India). https://doi.org/
10.1145/2568225.2568293

[10] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. 1998. A Decision Procedure
for Bit-Vector Arithmetic. In Proc. of the 35th Design Automation Conference
(DAC’98) (San Francisco, CA, USA). https://doi.org/10.1145/277044.277186

[11] Aaron R Bradley, Zohar Manna, and Henny B Sipma. 2006. What’s decidable
about arrays?. In International Workshop on Verification, Model Checking, and
Abstract Interpretation. Springer, 427ś442. https://doi.org/10.1007/11609773_28

[12] Tegan Brennan, Seemanta Saha, Tevfik Bultan, and Corina S Păsăreanu. 2018.
Symbolic path cost analysis for side-channel detection. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 27ś37.
https://doi.org/10.1145/3213846.3213867

[13] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir.
2019. CaSym: Cache aware symbolic execution for side channel detection and
mitigation. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 505ś521.
https://doi.org/10.1109/SP.2019.00022

[14] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08) (San Diego, CA, USA).

[15] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.
2006. EXE: Automatically Generating Inputs of Death. In Proc. of the 13th ACM
Conference on Computer and Communications Security (CCS’06) (Alexandria, VA,
USA). https://doi.org/10.1145/1455518.1455522

[16] Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic Cross-
checking of Floating-Point and SIMDCode. In Proc. of the 6th European Conference
on Computer Systems (EuroSys’11) (Salzburg, Austria). https://doi.org/10.1145/
1966445.1966475

[17] Leonardo De Moura and Nikolaj Bjùrner. 2011. Satisfiability modulo theories:
introduction and applications. Commun. ACM 54, 9 (2011), 69ś77. https://doi.
org/10.1145/1995376.1995394

[18] Xianghua Deng, Jooyong Lee, et al. 2006. Bogor/kiasan: A k-bounded symbolic
execution for checking strong heap properties of open systems. In 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06). IEEE, 157ś
166. https://doi.org/10.1109/ASE.2006.26

[19] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-vectors and
Arrays. In Proceedings of the 19th International Conference on Computer Aided
Verification (Berlin, Germany) (CAV’07). Springer-Verlag, Berlin, Heidelberg, 519ś
531. http://dl.acm.org/citation.cfm?id=1770351.1770421

[20] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In Proc. of the 15th Network and Distributed System
Security Symposium (NDSS’08) (San Diego, CA, USA).

[21] Patrice Godefroid and Daniel Luchaup. 2011. Automatic Partial Loop Sum-
marization in Dynamic Test Generation. In Proc. of the International Sympo-
sium on Software Testing and Analysis (ISSTA’11) (Toronto, Canada). https:
//doi.org/10.1145/2001420.2001424

[22] Trevor Hansen, Peter Schachte, and Harald Sùndergaard. 2009. State Joining
and Splitting for the Symbolic Execution of Binaries. In Proc. of the 2009 Runtime
Verification (RV’09) (Grenoble, France). https://doi.org/10.1007/978-3-642-04694-
0_6

[23] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for
In-house Debugging. In Proc. of the 34th International Conference on Software
Engineering (ICSE’12) (Zurich, Switzerland). https://doi.org/10.1109/ICSE.2012.
6227168

[24] Timotej Kapus and Cristian Cadar. 2019. A Segmented Memory Model for
Symbolic Execution. In Proceedings of the 2019 27th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of

Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). ACM, 774ś784. https:
//doi.org/10.1145/3338906.3338936

[25] Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, and Cristian
Cadar. 2019. Computing summaries of string loops in C for better testing and
refactoring. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 874ś888. https://doi.org/10.1145/3314221.
3314610

[26] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient state merging in symbolic execution. In Proc. of the Conference on
Programing Language Design and Implementation (PLDI’12) (Beijing, China).
https://doi.org/10.1145/2345156.2254088

[27] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proc. of the 2nd International
Symposium on Code Generation and Optimization (CGO’04) (Palo Alto, CA, USA).
https://doi.org/10.1109/CGO.2004.1281665

[28] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering. ACM, 691ś701. https:
//doi.org/10.1145/2884781.2884807

[29] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-
friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1186ś1189. https://doi.org/10.1109/ASE.2019.00133

[30] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proc. of the 35th
International Conference on Software Engineering (ICSE’13) (San Francisco, CA,
USA). https://doi.org/10.1109/ICSE.2013.6606623

[31] Corina S Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run
side-channel analysis using Symbolic Execution and Max-SMT. In 2016 IEEE 29th
Computer Security Foundations Symposium (CSF). IEEE, 387ś400.

[32] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: Integrating Symbolic
Execution with Model Checking for Java Bytecode Analysis. In Proc. of the 28th
IEEE International Conference on Automated Software Engineering (ASE’13) (Palo
Alto, CA, USA).

[33] David A. Ramos. 2015. Under-constrained symbolic execution : correctness checking
for real code. Ph.D. Dissertation. Stanford University.

[34] David A. Ramos and Dawson Engler. 2015. Under-constrained Symbolic Execu-
tion: Correctness Checking for Real Code. In Proc. of the 24th USENIX Security
Symposium (USENIX Security’15) (Washington, D.C., USA).

[35] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. 2009.
Loop-extended Symbolic Execution on Binary Programs. In Proc. of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA’09) (Chicago, IL, USA).
https://doi.org/10.1145/1572272.1572299

[36] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:
Multi-Path Symbolic Execution using Value Summaries. In 10th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE’15). ACM. https://doi.org/
10.1145/2786805.2786830 ACM SIGSOFT Distinguished Paper Award.

[37] Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and
Willem Visser. 2020. Java Ranger: Statically Summarizing Regions for Efficient
Symbolic Execution of Java. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 123ś134. https://doi.org/10.1145/
3368089.3409734

[38] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In Proc. of the IEEE Symposium on Security and Privacy (IEEE
S&P’16) (San Jose, CA, USA). https://doi.org/10.1109/SP.2016.17

[39] M Šimáček. 2018. Symbolic-size memory allocation support for Klee. Master’s
thesis, Masaryk University, Faculty of Informatics, Brno, 2018. (2018).

[40] Nishant Sinha. 2008. Symbolic program analysis using term rewriting and gener-
alization. In Proceedings of the 2008 International Conference on Formal Methods
in Computer-Aided Design. IEEE Press, 19. https://doi.org/10.1109/FMCAD.2008.
ECP.23

[41] Marek Trtík and Jan Strejček. 2014. Symbolic Memory with Pointers. In Auto-
mated Technology for Verification and Analysis (ATVA). https://doi.org/10.1007/
978-3-319-11936-6_27

1201

https://git.savannah.gnu.org/cgit/osip.git/commit/?id=ef6497
https://git.savannah.gnu.org/cgit/osip.git/commit/?id=2f0380
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/libtasn1/
https://www.gnu.org/software/osip/
http://www.libpng.org/pub/png/libpng.html
https://doi.org/10.1007/11691617_10
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/277044.277186
https://doi.org/10.1007/11609773_28
https://doi.org/10.1145/3213846.3213867
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1109/ASE.2006.26
http://dl.acm.org/citation.cfm?id=1770351.1770421
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1109/ICSE.2012.6227168
https://doi.org/10.1109/ICSE.2012.6227168
https://doi.org/10.1145/3338906.3338936
https://doi.org/10.1145/3338906.3338936
https://doi.org/10.1145/3314221.3314610
https://doi.org/10.1145/3314221.3314610
https://doi.org/10.1145/2345156.2254088
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/FMCAD.2008.ECP.23
https://doi.org/10.1109/FMCAD.2008.ECP.23
https://doi.org/10.1007/978-3-319-11936-6_27
https://doi.org/10.1007/978-3-319-11936-6_27

	Abstract
	1 Introduction
	2 Preliminaries
	3 Technique
	3.1 Symbolic-Size Model
	3.2 Mitigating Path Explosion By State Merging
	3.3 Optimizations
	3.4 Limitations

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 API Testing
	5.3 Whole-Program Testing
	5.4 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

