
State Merging with �antifiers in Symbolic Execution

David Trabish
Tel Aviv University
Tel Aviv, Israel

davivtra@post.tau.ac.il

Noam Rinetzky
Tel Aviv University
Tel Aviv, Israel

maon@cs.tau.ac.il

Sharon Shoham
Tel Aviv University
Tel Aviv, Israel

sharon.shoham@cs.tau.ac.il

Vaibhav Sharma
University of Minnesota

Minneapolis, USA
vaibhav@umn.edu

ABSTRACT

We address the problem of constraint encoding explosion which

hinders the applicability of state merging in symbolic execution.

Speci�cally, our goal is to reduce the number of disjunctions and

if-then-else expressions introduced during state merging. The main

idea is to dynamically partition the symbolic states into merging

groups according to a similar uniform structure detected in their

path constraints, which allows to e�ciently encode the merged

path constraint and memory using quanti�ers. To address the added

complexity of solving quanti�ed constraints, we propose a special-

ized solving procedure that reduces the solving time in many cases.

Our evaluation shows that our approach can lead to signi�cant

performance gains.

CCS CONCEPTS

• Software and its engineering;

KEYWORDS

Symbolic Execution, State Merging

ACM Reference Format:

David Trabish, Noam Rinetzky, Sharon Shoham, and Vaibhav Sharma. 2023.

State Merging with Quanti�ers in Symbolic Execution. In Proceedings of the

31st ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,

2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3611643.3616287

1 INTRODUCTION

Symbolic execution is a powerful program analysis technique that

has gained signi�cant attention over the last years in both academic

and industrial areas, including software engineering, software test-

ing, programming languages, program veri�cation, and cybersecu-

rity. It lies at the core of many applications, such as high-coverage

test generation [19, 20, 42], bug �nding [19, 31], debugging [34],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616287

automatic program repair [39, 40], cross checking [22, 35], and side-

channel analysis [17, 18, 41]. In symbolic execution, the program is

run with an unconstrained symbolic input, rather than with a con-

crete one. Whenever the execution reaches a branch that depends

on the symbolic input, an SMT solver [26] is used to determine the

feasibility of each branch side, and the feasible paths are further

explored while updating their path constraints with the correspond-

ing constraints. Once the execution of a given path is completed,

the solver provides a satisfying assignment for the corresponding

path constraints, from which a concrete test case that replays that

path can be generated.

A key remaining challenge in symbolic execution is path ex-

plosion [21]. State merging [33, 37] is a well-known technique for

mitigating this problem, which trades the number of explored paths

with the complexity of the generated constraints. More speci�cally,

merging multiple symbolic states results in a symbolic state where

the path constraint is expressed using a disjunction of constraints,

and the memory contents are expressed using ite (if-then-else)

expressions.

Unfortunately, the introduction of disjunctive constraints and ite

expressions makes constraint solving harder and slows down the

exploration, especially when the number of states being merged is

high. Consider, for example, the function memspn from Section 1

which is based on the implementation of strspn in uClibc [54].1

memspn receives a bu�er s, the size of the bu�er n, and a string

chars, and returns the size of the initial segment of swhich consists

entirely of characters in chars. Suppose that memspn is called with

a symbolic bu�er s, a symbolic size n bounded by some constant<,

and the constant string "a". The exploration of the loop at lines 3-8

results in $ (<) symbolic states. If we merge these symbolic states,

then the encoding of the merged symbolic state, which records,

among others, the path constraint and the value of variable count,

is of size at least linear in<. Now, suppose that the merged return

value of memspn is used later, for example, in the parameter s in

another call of memspn. In that case, if we perform a similar merging

operation, then the encoding of the merged symbolic state will be of

size at least quadratic in< since the merged value propagates to the

path constraints. Such encoding explosion is typically encountered

during the analysis of real-world programs, thus drastically limiting

the e�ectiveness of state merging in practice.

We propose a state merging approach that reduces the encoding

complexity of the path constraints and the memory contents, while

1strspn receives null-terminated bu�ers, slightly complicating the presentation.

1140

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616287
https://doi.org/10.1145/3611643.3616287
https://doi.org/10.1145/3611643.3616287

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA David Trabish, Noam Rinetzky, Sharon Shoham, and Vaibhav Sharma

1 int memspn(char *s, size_t n, char *chars) {

2 char *p = chars; int count = 0;

3 while (*p && count < n) {

4 if (*p == s[count]) {

5 count++; p = chars;

6 } else

7 p++;

8 }

9 return count;

10 }

Figure 1: Motivating example.

preserving soundness and completeness w.r.t. standard symbolic

execution. At a high level, our approach takes as an input the execu-

tion tree [36], which characterizes the symbolic branches occurring

during the symbolic execution of the analyzed code fragment, and

dynamically detects regular patterns in the path constraints of the

symbolic states in the tree, which allows us to partition them into

merging groups of states whose path constraints have a similar

uniform structure. This enables us to encode the merged path con-

straints using quanti�ed formulas, which in turn may also simplify

the encoding of ite expressions representing the merged memory

contents.

We observed that the generic method employed by the SMT

solver to solve the resulting quanti�ed queries often leads to subpar

performance compared to the solving of the quanti�er-free variant

of the queries. To address this, we propose a specialized solving

procedure that leverages the particular structure of the generated

quanti�ed queries, and resort to the generic method only if our

approach fails.

We implemented our approach on top of KLEE [19] and evalu-

ated it on real-world benchmarks. Our experiments show that our

approach can have signi�cant performance gains compared to state

merging and standard symbolic execution.

2 PRELIMINARIES

State Merging. A symbolic state B consists of (i) a path constraint

B .?2 , (ii) a symbolic store B .mem that associates variables2 + with

symbolic expressions obtained from the symbolic inputs, (iii) and

an instruction counter B .ic. Symbolic states are merge-compatible

if they have the same instruction counter and contain the same

variables in their stores.

De�nition 2.1. The merged symbolic state resulting from the

merging of the merge-compatible symbolic states {B8 }
=
8=1 is the

symbolic state B de�ned as follows:

B .ic ≜ B1 .82, B .pc ≜
∨=

8=1 B8 .?2,

B .mem ≜ _E ∈ + . merge_var({B8 }
=
8=1, E)

where the merged value of a variable E is de�ned by:

merge_var({B8 }
=
8=1, E) ≜

ite(B1 .?2, B1 .mem(E),

ite(. . . , ite(B=−1 .?2, B=−1 .mem(E), B= .mem(E))))

2For simplicity, we do not describe the handling of stack variables and heap-allocated
objects. Our implementation supports both.

State merging is applied on a given code fragment, typically a

loop or a function. Once the symbolic exploration of the code frag-

ment is complete, the resulting symbolic states are partitioned into

(merge-compatible) merging groups. Then, each merging group is

transformed into a single merged symbolic state. Finally, the result-

ing merged symbolic states are added to the state scheduler [19] of

the symbolic execution engine to continue the exploration.

Execution Trees. An execution tree [36] is a tree where every

node = is associated with a symbolic state =.B and a symbolic condi-

tion =.2 corresponding to the taken branch such that the conditions

associated with any two sibling nodes are mutually inconsistent

and the condition of the root node is true. The execution tree char-

acterizes the analysis of an arbitrary code fragment, which is not

necessarily the whole program. The root node corresponds to the

symbolic state that reached the entry point of the code fragment,

and the leaf nodes correspond to the symbolic states that com-

pleted the analysis of the code fragment. For example, consider the

symbolic execution of memspn (Section 1) with a symbolic bu�er

s, a symbolic size n, and "a", where n is bounded by 3. The corre-

sponding execution tree is depicted in Figure 2, where the symbolic

condition associated with each node is depicted on the incoming

edge of the node. The node =1 corresponds to the initial symbolic

state (i.e., =1 .B .?2 ≜ = ≤ 3), the nodes =2, =6 =10, and =14 corre-

spond to paths where s is comprised of only a characters, and the

nodes =5, =9, and =13 correspond to paths where s contains a non-a

character. For now, ignore the color of the nodes.

Given an execution tree C with root A , we denote the sequence

of nodes on the path from node =1 to node =: in C by cC (=1, =:)

and write cC (=:) when =1 is the root A . Given a path cC (=1, =:) =

[=1, =2, ..., =:] in C , we de�ne its tree path condition (tpc) and tree

path condition tail (tpc):

tpcC (=1, =:) ≜ =1 .2 ∧ tpcC (=1, =:) tpcC (=1, =:) ≜
∧

1<8≤:

=8 .2

We write tpcC (=) ≜ tpcC (A, =) and tpcC (=) ≜ tpcC (A, =) as short-

hands. We omit the tree subscript when it is clear from the context.

For example, in the execution tree depicted in Figure 2:

c (=3, =7) ≜ [=3, =4, =7]

tpc(=3, =7) ≜ = > 0 ∧ B [0] = 97 ∧ = > 1

tpc(=3, =7) ≜ B [0] = 97 ∧ = > 1

An execution tree C with root A is valid if =.B.?2 = A .B .pc ∧

tpc(=) for every node =. Note that A .B is not necessarily the initial

symbolic state of the whole program, so tpc(=) is a su�x of the

path constraints. From now on, we assume that all trees are valid.

Logical Notations.We encode symbolic path constraints and

memory contents in �rst-order logic modulo theories using formu-

las and terms, respectively. A term is either a constant, a variable, or

an application of a function to terms. A formula is either an applica-

tion of a predicate symbol to terms or obtained by applying boolean

connectives or quanti�ers to formulas. Let i , i ′ be formulas and

< a model. We write i ≡ i ′ to note that i and i ′ are semantically

equivalent and i � i ′ to note that they are syntactically equal. We

write< |= i to note that< is a model of i . For a term C , we denote

by<(C) the value assigned by< to C , and we write C1 ≡ C2 to denote

that<(C1) =<(C2) in any model<. We use the standard theory of

arrays [51] and write 0[4] as a shorthand for select(0, 4).

1141

State Merging with�antifiers in Symbolic Execution ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

¬𝒏 > 𝟎 𝒏𝟏 𝒏 > 𝟎
𝒔 𝟎 = 𝟗𝟕 ¬𝒔 𝟎 = 𝟗𝟕𝒏𝟐 𝒏𝟑
𝒏𝟒 𝒏𝟓

𝒏𝟔 𝒏𝟕
¬𝒏 > 𝟏 𝒏 > 𝟏

𝒏𝟖 𝒏𝟗
𝒏𝟏𝟎 𝒏𝟏𝟏

𝒏𝟏𝟐 𝒏𝟏𝟑

𝒔 𝟏 = 𝟗𝟕 ¬ 𝒔 𝟏 = 𝟗𝟕

𝒔 𝟐 = 𝟗𝟕 ¬ 𝒔 𝟐 = 𝟗𝟕
¬𝒏 > 𝟐 𝒏 > 𝟐

𝒏𝟏𝟒
¬𝒏 > 𝟑

Figure 2: The execution tree of the loop from Section 1 when

chars is set to "a". (Recall that the ASCII code of a is 97.)

3 STATE MERGINGWITH QUANTIFIERS

In this section, we describe our approach for state merging with

quanti�ers. We start with a motivating example and subsequently

formalize our approach.

Motivating Example. Consider the symbolic states associated

with the nodes =5, =9, and =13 from the execution tree in Figure 2,

whose tree path conditions, i.e., , tpc(=5), tpc(=9), and tpc(=13), are:

= > 0 ∧ ¬B [0] = 97

= > 0 ∧ B [0] = 97 ∧ = > 1 ∧ ¬B [1] = 97

= > 0 ∧ B [0] = 97 ∧ = > 1 ∧ B [1] = 97 ∧ = > 2 ∧ ¬B [2] = 97

The path constraint of the initial symbolic state (=1 .B) is = ≤ 3, so

applying standard state merging (De�nition 2.1) on the symbolic

states of the nodes above will result in a symbolic state whose path

constraint is equivalent to:

= ≤ 3 ∧ (tpc(=5) ∨ tpc(=9) ∨ tpc(=13))

Note, however, that each of the disjuncts above has the following

uniform structure: It uses : formulas (for : = 0, 1, 2) of the form

= > _ ∧ B [_] = 97 to encode that the size of the bu�er (=) is big

enough to contain : consecutive occurrences of a characters, and

another formula = > : ∧ ¬B [:] = 97. This uniformity is exposed

when rewriting each disjunct using universal quanti�ers as follows:

(

∀8 .1 ≤ 8 ≤ 0 → = > 8 − 1 ∧ B [8 − 1] = 97
)

∧ = > 0 ∧ ¬B [0] = 97
(

∀8 .1 ≤ 8 ≤ 1 → = > 8 − 1 ∧ B [8 − 1] = 97
)

∧ = > 1 ∧ ¬B [1] = 97
(

∀8 .1 ≤ 8 ≤ 2 → = > 8 − 1 ∧ B [8 − 1] = 97
)

∧ = > 2 ∧ ¬B [2] = 97

To exploit the common structure of the rewritten disjuncts, we

can introduce an auxiliary variable (:) and obtain an equisatis�able

merged path constraint3:

= ≤ 3 ∧ (: = 0 ∨ : = 1 ∨ : = 2) ∧
(

∀8 .1 ≤ 8 ≤ : → = > 8 − 1 ∧ B [8 − 1] = 97
)

∧

(= > : ∧ ¬B [:] = 97)

The auxiliary variable allows us to achieve similar savings in the

encoding of the merged memory contents. Consider, for example,

the variable count. Its value in the symbolic states corresponding

to =5, =9, and =13 is 0, 1, and 2, respectively, so its merged value

with standard state merging is:

ite(tpc(=5), 0, ite(tpc(=9), 1, 2))

Note, however, that with the rewritten merged path constraint, the

path constraints of the symbolic states corresponding to =5, =9,

and =13 are now correlated with the values of : : 0, 1, and 2. As the

values of count can be encoded as a function of those values, we

can simply rewrite the complex ite expression above to : .

Our Approach. Our goal is to reduce the number of disjunctions

and ite expressions introduced in standard state merging. Given

a set of merge-compatible symbolic states, our state merging ap-

proach works as follows. First, we compute partitions of symbolic

states based on the similarity of the path constraints (Section 3.1).

Then, for each partition, we attempt to synthesize the merged sym-

bolic state using universal quanti�ers (Sections 3.2 and 3.3), and

resort to standard state merging if that fails.

3.1 Partitioning Merging Groups via Regular
Patterns

To identify similarity between symbolic states, we use the execution

tree of the analyzed code fragment. Recall that the symbolic states

in each merging group are associated with leaf nodes and respective

paths in the execution tree. We abstract each path to a sequence

of numbers using a specialized hash function, which allows us to

detect similarity between paths based on a shared regular pattern.

De�nition 3.1. A hash function ℎ maps constraints (formulas) to

numbers (N). We say that ℎ is valid for an execution tree C if for

any two sibling nodes =1 and =2:

ℎ(=1 .2) ≠ ℎ(=2 .2)

In the sequel, we assume a �xed arbitrary valid execution tree C

and a �xed arbitrary valid hash function ℎ for C .4 We now extend ℎ

to paths as follows:

De�nition 3.2. The hash of a path c (=1, =:) = [=1, ..., =:] in C is

de�ned as follows:

ℎ(c (=1, =:)) ≜ ℎ(=1 .2)ℎ(=2 .2) . . . ℎ(=: .2) ∈ N
∗

Note that the validity ofℎ ensures that every path in C is identi�ed

uniquely by its hash value.

De�nition 3.3. A regular pattern is a tuple (l1, l2, l3), where

l1, l2, l3 ∈ N∗ are words (sequences) of numbers. Given leaf nodes

{= 9 }
=
9=1 in C , and numbers {: 9 }

=
9=1 ⊆ N, we say that {(= 9 , : 9)}

=
9=1

3Note that (: = 0 ∨ : = 1 ∨ : = 2) can be rewritten as 0 ≤ : ≤ 2.
4In practice, we use a hash function that distinguishes between a condition and its
negation, e�ectively ensuring validity for any execution tree.

1142

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA David Trabish, Noam Rinetzky, Sharon Shoham, and Vaibhav Sharma

Table 1: A regular partitioning of the leaf nodes of the execution tree in Figure 2, and the resulting merged states.

Regular Pattern Regular Partition Pattern-Based Merged States

(W,GB,GY) {=5, =9, =13 } formula pattern : (true, = > G − 1 ∧ B [G − 1] = 97, = > G ∧ ¬B [G] = 97)

pc : = ≤ 3 ∧ 0 ≤ : ≤ 2 ∧ (∀8 .1 ≤ 8 ≤ : → = > 8 − 1 ∧ B [8 − 1] = 97) ∧ (= > : ∧ ¬B [:] = 97)

mem : [count ↦→ :, p ↦→ chars + 1, s ↦→ s, n ↦→ n, chars ↦→ chars]

(W,GB, R) {=2, =6, =10, =14 } formula pattern : (true, = > G − 1 ∧ B [G − 1] = 97, = ≤ G)

pc : = ≤ 3 ∧ 0 ≤ : ≤ 3 ∧ (∀8 .1 ≤ 8 ≤ : → = > 8 − 1 ∧ B [8 − 1] = 97) ∧ ¬= > :

mem : [count ↦→ :, p ↦→ chars, s ↦→ s, n ↦→ n, chars ↦→ chars]

match the regular pattern (l1, l2, l3) if for every 9 = 1, ..., =:

ℎ(c (= 9)) = l1l
: 9

2
l3 .

De�nition 3.4. A set of leaf nodes {= 9 }
=
9=1 in C is called a regular

partition if there exists a regular pattern (l1, l2, l3) and a set

{: 9 }
=
9=1 ⊆ N such that {(= 9 , : 9)}

=
9=1 match that pattern. A regular

partitioning of leaf nodes in C is a partitioning into disjoint regular

partitions.

Example 1. Consider a hash function ℎ that operates on the ab-

stract syntax tree (AST) of a formula and assigns the same pre-de�ned

value to all the constant numerical terms. Such a hash function en-

sures that formulas with a similar shape will be assigned the same

hash value, for example:

ℎ(= > 0) = ℎ(= > 1) = ℎ(= > 2)

ℎ(B [0] = 97) = ℎ(B [1] = 97)

Figure 2 shows the resulting hash values of the nodes in the execu-

tion tree. For simplicity, we visualize every hash value as a distinct

color: white (W), red (R), blue (B), green (G), and yellow (Y). Here,

{(=5, 0), (=9, 1), (=13, 2)}match the regular pattern (W,GB,GY) since:

ℎ(c (=5)) = WGY, ℎ(c (=9)) = WGBGY, ℎ(c (=13)) = WGBGBGY

A (possible) regular partitioning of the leaf nodes in Figure 2 is

given in Table 1, which shows in the two leftmost columns the regular

patterns and their corresponding regular partitions.

In the following sections, we show how given a regular parti-

tion and its corresponding regular pattern, we can synthesize the

resulting merged symbolic state using quanti�ers.

3.2 Pattern-Based State Merging

A regular pattern indicates the potential existence of a uniform

structure in the path conditions of the symbolic states in the asso-

ciated regular partition. We formalize this intuition using formula

patterns.

De�nition 3.5. A formula pattern is a tuple (i1, i2 (G), i3 (G)),

where i1 is a closed formula, and i2 (G) and i3 (G) are formulas

with a free variable G . We say that {(= 9 , : 9)}
=
9=1 match the formula

pattern (i1, i2 (G), i3 (G)), if for every 9 = 1, ..., =:

tpc(= 9) � i1 ∧
(

: 9
∧

8=1

i2 [8/G]
)

∧ i3 [: 9/G]

The uniform structure exposed by formula patterns enables us

to perform state merging with quanti�ers:

De�nition 3.6. Let {= 9 }
=
9=1 be a set of leaf nodes in C such that

{= 9 .B}
=
9=1 are merge-compatible and {(= 9 , : 9)}

=
9=1 match the for-

mula pattern (i1, i2 (G), i3 (G)). The pattern-based merged symbolic

state of {= 9 .B}
=
9=1 is a symbolic state B whose path constraint, B .?2 ,

is:

A .B .?2 ∧ (

=
∨

9=1

: = : 9) ∧ i1 ∧ (∀8 . 1 ≤ 8 ≤ : → i2 [8/G]) ∧ i3 [:/G]

where : is a fresh constant, 8 is a fresh variable, and A is the root

of C .

The symbolic store of B is de�ned as follows. For every vari-

able E , if there exists a term C (G) with a free variable G such that

C [: 9/G] � = 9 .B .<4<(E) for every 9 = 1, . . . , =, then the value

of E is encoded as B .mem(E) ≜ C [:/G]. Otherwise, B .mem(E) ≜

merge_var({= 9 .B}
=
9=1, E) (De�nition 2.1).

Pattern-based statemerging is sound and completew.r.t. standard

state merging. This is formalized in the following theorem:

Theorem 3.7. Under the premises of De�nition 3.6, let B be the

pattern-based merged symbolic state of {= 9 .B}
=
9=1, and let B

′ be their

merged symbolic state obtained with standard state merging (De�ni-

tion 2.1). The following holds for any model<:

• < |= B′.?2 i�<[: ↦→ :̃] |= B .?2 for some :̃ ∈ N.

• If < |= B .?2 then <(B′.mem(E)) = <(B .mem(E)) for every

variable E .

Example 2. Consider the regular partition {=5, =9, =13} shown in

the �rst row of Table 1. The formula pattern (CAD4, = > G − 1 ∧ B [G −

1] = 97, = > G∧¬B [G] = 97) is matched by ({(=5, 0), (=9, 1), (=13, 2)}.

The merged symbolic state induced by that formula pattern is shown

in the rightmost column in Table 1 (pc and mem). Note that for the

variable count, the term C (G) ≜ G satis�es:

C [0/G] = 0, C [1/G] = 1, C [2/G] = 2

so the merged value of that variable can be simpli�ed to : . The merg-

ing of the other variables is rather trivial as the symbolic states being

merged agree on their values.

3.3 Synthesizing Formula Patterns

So far, we have yet to discuss how formula patterns are obtained.

We now describe an approach that attempts to synthesize a formula

pattern given a regular pattern and its associated regular partition.

As explained in Section 3.2, this enables us to perform state merging

with quanti�ers.

Our hash function ℎ, which we assume to be valid for C (De�ni-

tion 3.1), has the following useful property:

1143

State Merging with�antifiers in Symbolic Execution ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Lemma 3.8. The following holds for any two nodes =1 and =2 in C :

(1) If ℎ(c (=1)) = ℎ(c (=2)) then =1 = =2.

(2) If ℎ(c (=1)) is a pre�x of ℎ(c (=2)), then there is a single path

c (=1, =2) in C .

Accordingly, we de�ne:

De�nition 3.9. Let l1, l2 ∈ N∗ be two words such that:

ℎ(c (=1)) = l1, ℎ(c (=2)) = l1l2

for some nodes =1 and =2 in C . Then we de�ne:

4GCA02C (l1) ≜ tpc(=1), 4GCA02C (l1, l1l2) ≜ tpc(=1, =2)

which gives us the tree path condition tails associatedwith the paths

c (=1) and c (=1, =2), respectively. (Note that Lemma 3.8 ensures

that =1 and =2 are uniquely determined by l1 and l2.)

We use extract to de�ne the su�cient requirements to obtain a

formula pattern from a given regular pattern.

Lemma 3.10. Suppose that {(= 9 , : 9)}
=
9=1 match the regular pat-

tern (l1, l2, l3). Let (i1, i2 (G), i3 (G)) be a formula pattern that

satis�es:

i1 � 4GCA02C (l1)

i2 [8/G] � 4GCA02C (l1l
8−1
2

, l1l
8
2
) (8 = 1, ...,max{: 9 }

=
9=1)

i3 [: 9/G] � 4GCA02C (l1l
: 9

2
, l1l

: 9

2
l3) (9 = 1, ..., =)

Then {(= 9 , : 9)}
=
9=1 match (i1, i2 (G), i3 (G)).

Based on Lemma 3.10, we reduce the problem of �nding a formula

pattern to two synthesis tasks, fori2 andi3. (Note thati1 is trivially

obtained from the �rst requirement of the lemma.) Each synthesis

task has the form:

i [3ℓ/G] � kℓ (ℓ = 1, ..., ?)

where (i) i (G) is the formula to be synthesized (i.e., i2 or i3), (ii) ?

is the number of equations (which is either<0G{: 9 }
=
9=1 in the case

of i2 or = in the case of i3), (iii) {kℓ }
?
ℓ=1 are formulas (obtained

from the extracted path constraints), and (iv) {3ℓ }
?
ℓ=1 are constant

numerical terms (which are the 8’s in the case of i2 or the : 9 ’s in

the case of i3).

As synthesis is a hard problem in general, we focus on the case

where all formulas in {kℓ }
?
ℓ=1 are syntactically identical up to a

constant numerical term, i.e., there exists a formula \ (~) such that

\ [Wℓ/~] � kℓ for some numerical constants {Wℓ }
?
ℓ=1. To obtain

i (G) from \ (~), it remains to synthesize a term that will express

each Wℓ using the corresponding 3ℓ . Technically, if there exists a

term C (G) such that:

C [3ℓ/G] ≡ Wℓ (ℓ = 1, ..., ?)

then the desired formula i (G) will be given by \ [C (G)/~]. When

looking for such C (G), we restrict our attention to terms of the form

0 · G + 1 where 0 and 1 are constant numerical terms that must

satisfy:
?
∧

ℓ=1

(0 · 3ℓ + 1 = Wℓ)

The existence of such 0 and 1 can be checked using an SMT solver.

Example 3. Consider again the regular pattern (W,GB,GY) which

is matched by {(=5, 0), (=9, 1), (=13, 2)}. We look for a formula pattern

(i1, i2 (G), i3 (G)) that satis�es:

i1 � CAD4 4GCA02C (W)

i2 [1/G] � = > 0 ∧ B [0] = 97 4GCA02C (W,WGB)

i2 [2/G] � = > 1 ∧ B [1] = 97 4GCA02C (WGB,WGBGB)

i3 [0/G] � = > 0 ∧ ¬B [0] = 97 4GCA02C (W,WGY)

i3 [1/G] � = > 1 ∧ ¬B [1] = 97 4GCA02C (WGB,WGBGY)

i3 [2/G] � = > 2 ∧ ¬B [2] = 97 4GCA02C (WGBGB,WGBGBGY)

Consider, for example, the formulas associated with i2. First, note

that they are identical up to a constant numerical term, e.g., for

\ (~) ≜ = > ~ ∧ B [~] = 97:

\ [0/~] � = > 0 ∧ B [0] = 97 \ [1/~] � = > 1 ∧ B [1] = 97

Now we look for constant numerical terms 0 and 1 such that:

(0 = (0 · G + 1) [1/G]) ∧ (1 = (0 · G + 1) [2/G])

which is satis�ed by 0 ≜ 1 and 1 ≜ −1, therefore:

i2 (G) ≜ \ [(G − 1)/~] � = > G − 1 ∧ B [G − 1] = 97

We similarly synthesize i3 (G) ≜ = > G ∧ ¬B [G] = 97.

If we succeeded to synthesize a formula pattern (i1, i2 (G), i3 (G))

matched by {(= 9 , : 9)}
=
9=1, we attempt to synthesize the merged

value of a variable E by synthesizing a term C (G) that satis�es:

C [: 9/G] � = 9 .B .<4<(E) (9 = 1, ..., =)

Such terms are synthesized similarly to formula patterns.

For each regular partition shown in Table 1, we automatically

synthesize the formula pattern and the induced merged symbolic

state using the technique above.

The proofs for Theorem 3.7 and the other lemmas are given

in [53, Section A].

4 INCREMENTAL STATE MERGING

When symbolically analyzing code fragments that contain disjunc-

tive conditions, the number of generated states, as well as the size of

the generated execution trees, might be exponential. In such cases,

the exploration of the code fragment might not terminate within

the allocated time budget and the analysis might not even reach

the point where state merging, and pattern-based state merging in

particular, can be applied.

To address this issue, we propose an incremental approach for

state merging, in which we merge leaves in the execution tree

not only with other leaves but also with internal nodes during

the construction of the tree. This allows to compress the tree as it

is constructed. Once the construction of the tree is complete, we

can apply our pattern-based state merging approach on the leaves.

Technically, in addition to the active symbolic states, i.e., those that

are stored in the current leaf nodes, we keep also the non-active

symbolic states, i.e., those that are stored in the internal nodes.

When a new leaf =1 is added to the execution tree, we search for

the highest node =2, i.e., closest to the root, such that =1 .B and =2 .B

are merge-compatible and have the same symbolic store w.r.t. live

variables [11]. We additionally require that =1 is unreachable from

1144

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA David Trabish, Noam Rinetzky, Sharon Shoham, and Vaibhav Sharma

𝒏𝟏𝒔 𝟎 = 𝟗𝟕 ¬ 𝒔 𝟎 = 𝟗𝟕
𝒔 𝟎 = 𝟗𝟖 ¬ 𝒔 𝟎 = 𝟗𝟖

¬ 𝒔 𝟎 = 𝟗𝟕 ∧ (¬ 𝒔 𝟎 = 𝟗𝟖)𝒔 𝟎 = 𝟗𝟕 ∨ (¬ 𝒔 𝟎 = 𝟗𝟕 ∧ 𝒔 𝟎 = 𝟗𝟖)

𝒏𝟐 𝒏𝟑
𝒏𝟒 𝒏𝟓
𝒏𝟏

𝒏𝒏𝒆𝒘 𝒏𝟓

before

after

Figure 3: Execution tree transformationwhen memspn is called

with chars set to "ab".

=2 to avoid in�nite sequences of merges. If such a node =2 is found,

we replace =1 and =2 (and their subtrees) with a single merged node

=new that is added as a child of their lowest common ancestor, =lca.

We �x=new .2 ≜ tpc(=lca, =1)∨tpc(=lca, =2) and=new .B is the merged

state of =1 .B and =2 .B . After the above, if a node ? remains with a

single child =, we remove ? , redirect its incoming edge to =, and

update the condition of = to =.2 ∧ ?.2 . As we merge internal nodes,

our approach does not rely on the search heuristic to synchronize

between the active symbolic states to produce successful merges.

To avoid nodes with more than two children, we require that =lca
is the parent of =1 or =2. (This restriction can be easily lifted.)

Example 4. Consider again the function memspn from Section 1.

When symbolically analyzing memspn while setting the value of the

chars parameter to "ab", instead of "a", this results in an expo-

nential execution tree. The upper part of Figure 3 shows the partial

execution tree with some of the nodes that were added during the

execution of the �rst iterations of the loop at line 3. Assuming that =2
is added last, we merge it with =4 as the symbolic states associated

with =2 and =4 are both located at line 5 and their symbolic stores

w.r.t. live variables are identical, since p is dead at this location. We

remove =2 and =4 together with its subtree, and add a new node ==4F
as a child of =1, the lowest common ancestor of =2 and =4. Then, =3 is

left with its own child, =5, so we remove =3 and appropriately update

the condition of =5. This results in the execution tree shown in the

lower part of Figure 3. After applying similar steps in the subsequent

iterations of the loop, the �nal execution tree is similar to the one

from Figure 2, and can be obtained from it by replacing B [8] = 97

and ¬B [8] = 97 with B [8] = 97 ∨ (¬B [8] = 97 ∧ B [8] = 98) and

¬B [8] = 97 ∧ ¬B [8] = 98, respectively (for 8 = 0, 1, 2). Now, pattern-

based state merging can be applied similarly to the example given in

Section 3.

The incremental state merging approach uses a standard liveness

analysis [11] to �nd symbolic states to be merged. If the computed

liveness results are imprecise, our approach will not be able to �nd

matching symbolic states and therefore will not be able to compress

the execution tree. In that case, our approach will only impose the

overhead of maintaining snapshots of non-active symbolic states.

5 SOLVING QUANTIFIED QUERIES

In general, the quanti�ed queries generated by our approach (Sec-

tion 3) can be solved using an SMT solver that supports quanti�ed

formulas, e.g., Z3 [24]. In practice, however, we observed that the

generic method employed by Z35 to solve such queries often leads

to subpar performance compared to the solving of the quanti�er-

free variant of the queries. Hence, we devise a solving procedure

that leverages the particular structure of the generated quanti�ed

formulas, and resort to the generic method if our approach fails.

Our solving procedure assumes a closed formula i =
∧

2 where

each clause 2 is either a quanti�er-free formula or a universal for-

mula of the form ∀8 . 1 ≤ 8 ≤ : → k where k is a quanti�er-free

formula with a free variable 8 . Our solving procedure works in four

stages:6

(1) Quanti�er stripping.We weaken i into a quanti�er-free

formulaiQF by replacing quanti�ed clauses with implied quanti�er-

free clauses. Technically, each quanti�ed clause ∀8 . 1 ≤ 8 ≤ : → k

ini is replaced with the conjunction of the following two quanti�er-

free formulas7:

(1) : ≥ 1 → k [1/8] (2)
∧

{¬(1 ≤ C ≤ :) | (¬k [C/8]) ∈ i}

Intuitively, the former provides a quanti�er-free clause which par-

tially preserves the properties imposed by the quanti�ed clause, and

the latter reduces the chances that the SMT solver computes amodel

of iQF that does not satisfy i : if 1 ≤ C ≤ : then ∀8 . 1 ≤ 8 ≤ : → k

demands that k [C/8] holds in any model of i . If the SMT solver

fails to �nd a model for iQF , then i is also unsatis�able. If a model

was found, we check whether it is also a model of i .

Example 5. Consider the following query, a simpli�cation of a

representative query from our experiments:

i ≜(B [=] = 0) ∧ (1 ≤ : ≤ 10) ∧ (B [: − 1] = 8)∧

(∀8 . 1 ≤ 8 ≤ : → B [8 − 1] ≠ 0)

Note that (a) the instantiation of the quanti�ed formula using 8 = 1

results in : ≥ 1 → B [0] ≠ 0, and (b) B [=] = 0 is obtained by

substituting ¬(B [8 − 1] ≠ 0) [= + 1/8]. Thus, the weakened query

obtained by quanti�er stripping is given by:

iQF ≜(B [=] = 0) ∧ (1 ≤ : ≤ 10) ∧ (B [: − 1] = 8)∧

(: ≥ 1 → B [0] ≠ 0) ∧ ¬(1 ≤ = + 1 ≤ :)

The following model, for example, is a model of iQF :

< ≜ {= ↦→ 7, : ↦→ 7, B ↦→ [1, 0, 0, 0, 0, 0, 8, 0]}

but, unfortunately, it is not a model of i .

(2) Assignment Duplication. If< is not amodel ofi , wemodify

< into a model<3 which assigns to every array cell accessed by a

quanti�ed clause a value E of a cell in that array that was explicitly

constrained by iQF . Technically, for every array 0 accessed with an

o�set that depends on the quanti�ed variable 8 we do the following:

(1) pick an accessed o�set > of 0 ink such that > depends on 8 , (2)

evaluate the value of (0[>]) [1/8] in<, namely E , and (3) compute

the concrete o�sets obtained by evaluating > [9/8] in< (for 2 ≤ 9 ≤

5CVC5 [15] and Yices [28] failed to solve most of our queries.
6For the interested reader, a complete pseudo code of the solving procedure is given
in [53, Section B].
7We write 2 ∈ i to note that 2 is one of the clauses of i .

1145

State Merging with�antifiers in Symbolic Execution ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

<(:)) and modify< such that the values of 0 at these o�sets are

set to E . Recall that the accessed cells of 0 ink [1/8] were explicitly

constrained in iQF , so E is a good candidate to �ll in all the other

cells of 0 constrained in i . However, this duplication is rather naive

and might result in a model that does not even satisfy iQF .

Example 6. Continuing Example 5, we pick from the quanti�ed

clause the accessed o�set 8 − 1 of the array B , and update the value

of B [9] to<(B [8 − 1] [1/8]) for each 1 ≤ 9 ≤ 6. This results in the

following model:

<3 ≜ {= ↦→ 7, : ↦→ 7, B ↦→ [1, 1, 1, 1, 1, 1, 1, 0]}

The model <3 helps to satisfy the quanti�ed clause, but does not

satisfy i (speci�cally, the clause B [: − 1] = 8 is violated).

(3) Model Repair. If<3 is not a model of i , we further modify

<3 into another model,<A , which, much like<3 , attempts to sat-

isfy the constraints on the contents of arrays that are imposed by i

but omitted in iQF . For every quanti�ed clause ∀8 . 1 ≤ 8 ≤ : → k ,

we collect all the accesses 0[>] where > depends on 8 . For each such

access and for each 2 ≤ 9 ≤ <(:), we compute the concrete o�set

obtained by evaluating > [9/8] in<3 and strengthen iQF with the

instantiationk [9/8] if that o�set appears in the concrete o�sets of

a violated quanti�er-free clause (or a violated instantiation). Rather

than computing from scratch a new model for the strengthened

query, we �x the values of all the array cells (and variables) ac-

cording to their interpretation in<3 except for the arrays that are

accessed with 8 , those for which a new interpretation is sought. If

the resulting query has a model, we apply assignment duplication

on it. This time, to avoid overwriting, the duplication is not applied

to the o�sets involved in violations.

Example 7. Continuing Example 6, the violated clause in themodel

<3 is B [: − 1] = 8, and its concrete access is B [6]. The concrete access

in the instantiation (B [8 − 1] ≠ 0) [7/8] that was omitted in iQF is

also B [6], so we add it to iQF . In addition, we concretize the values

of = and : according to<3 . The resulting strengthened query and its

possible model are:

iQF ∧ (B [6] ≠ 0) ∧ (= = 7) ∧ (: = 7)

{= ↦→ 7, : ↦→ 7, B ↦→ [1, 0, 0, 0, 0, 0, 8, 0]}

Then, we duplicate again, but this time while skipping over the

cell B [6]. Similarly to the �rst duplication, E is set to 1, but the value

of B [9] is updated only for 1 ≤ 9 ≤ 5, thus avoiding the original

violation. The resulting model indeed satis�es i :

<A ≜ {= ↦→ 7, : ↦→ 7, B ↦→ [1, 1, 1, 1, 1, 1, 8, 0]}

(4) Fallback. If no model<A is found, or if it does not satisfy i ,

we ask the SMT solver to �nd a model for i .

6 IMPLEMENTATION

We implemented our statemerging approach on top of the KLEE [19]

symbolic execution engine, con�gured with LLVM 7.0.0 [38]. Our

approach generates quanti�ed queries over arrays and bit vectors,

so we use Z3 [25] (version 4.8.17) as the underlying SMT solver.

We extended KLEE’s expression language to support quanti�ed

formulas, and modi�ed some parts of the solver chain accordingly.

We implemented our solving procedure (Section 5) as an additional

component in the solver chain. To implement the hash function

used by the pattern-based state merging approach (Section 3), we

relied on the expression hashing utility of KLEE and modi�ed it

by assigning a pre-de�ned hash value to all constants. To extract

the regular patterns from the execution trees, we used a basic reg-

ular expression matching algorithm. If our hash function is not

valid for a given generated execution tree (De�nition 3.1), or the

number of extracted regular patterns in that tree exceeds a user-

speci�ed threshold, then we fallback to standard state merging

(De�nition 2.1). Our implementation is available at [1].

7 EVALUATION

Evaluating a state-merging approach requires determining the de-

sired merging points, i.e., the code segments where state merging

should be applied. In our case, this translates to identifying code

segments that produce merging operations that involve many sym-

bolic states. To do so, we evaluate our approach in the context of the

symbolic-size memory model [52]. This model supports bounded

symbolic-size objects, i.e., objects whose size can have a range of

values, limited by a user-speci�ed capacity bound.8 It was observed

in [52] that loops operating on symbolic-size objects typically pro-

duce many symbolic states, and state-merging was suggested to

combat the ensued state explosion problem. Thus, this memory

model provides a suitable basis for evaluating our state-merging

approach. Furthermore, the automatic detection of merging points

in [52] avoids the need for manual annotations. We emphasize,

however, that our technique is independent of the symbolic-size

memory model itself (see Section 7.7). That said, the symbolic-size

memory model does have the potential to produce more challeng-

ing merging operations than the concrete-size model as it considers

a larger state space.

The following modes are the main subjects of comparison: The

PAT mode is the pattern-based state merging approach described in

Section 3 which partitions the symbolic states into merging groups

based on regular patterns in the execution tree, and uses quan-

ti�ers to encode the merged path constraints. In the PAT mode,

the incremental state merging approach (Section 4) and the solv-

ing procedure (Section 5) are enabled. The CFG mode is the state

merging approach discussed above (SMOpt mode from [52]), which

partitions the symbolic states into merging groups according to

their exit point from the loop in the CFG, and uses the standard

QFABV encoding [29] (disjunctions and ite expressions). The BASE

mode is the forking approach used in vanilla KLEE [19].

The following research questions guide our evaluation:

(RQ1) Does PAT improve standard state merging (CFG)?

(RQ2) Does PAT improve standard symbolic execution (BASE)?

(RQ3) Do all components contribute to the performance of PAT?

7.1 Benchmarks

The benchmarks used in our evaluation are listed in Table 2. These

benchmarks were chosen as they are challenging for symbolic ex-

ecution and provide numerous opportunities for applying state

merging. In each benchmark, we analyzed a set of subjects (APIs

and whole programs) whose inputs (parameters, command-line

8This is in contrast to the standard concrete-size model where every object has a
concrete size.

1146

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA David Trabish, Noam Rinetzky, Sharon Shoham, and Vaibhav Sharma

arguments, etc.) can be modeled using symbolic-size objects, i.e., ar-

rays and strings. In libosip [7], libtasn1 [6], and libpng [10], the test

drivers for the APIs were taken from [52].9 In wget [8], a library for

retrieving �les usingwidely used internet protocols (HTTP, etc.), we

reused the test drivers from the existing fuzzing test suite whenever

possible, and for other APIs, we constructed the test drivers manu-

ally. In apr [12] (Apache Portable Runtime), a library that provides

a platform-independent abstraction of operating system function-

alities, we constructed test drivers for APIs from several modules

(strings, �le_io and tables) which manipulate strings, �le-system

paths, and data structures. In json-c [9], a library for decoding and

encoding JSON objects, we constructed test drivers for APIs that

manipulate string objects. In busybox [4], a software suite that pro-

vides a collection of Unix utilities, we focused on utilities whose

input comes from command-line arguments and �les, which can

be symbolically modeled using KLEE’s posix runtime. We did not

analyze utilities whose behavior depends on the state of system

resources (process information, permissions, �le-system directories,

etc.), since KLEE has no symbolic modeling for those. To prevent

the symbolic executor from getting stuck in getopt(), the routine

used in busybox to parse command line arguments, we added the

restriction that symbolic command line arguments do not begin

with a ‘-’ character.

7.2 Setup

We run every mode under the symbolic-size memory model [52]

with the following con�guration: a DFS search heuristic, a one-hour

time limit, and a 4GB memory limit. The capacity settings in each

of the benchmarks are shown in Table 2.10

In every experiment, we use the following metrics to compare

between the modes: analysis time and line coverage computed with

GCov [5]. When the compared modes have the same exploration

order, we additionally use the path coverage metric, i.e., the number

of explored paths.

Each benchmark consists of multiple subjects, so when compar-

ing the twomodes, wemeasure the relative speedup and the relative

increase in coverage for each subject. Note that when we measure

the average (and median) speedup, for example, the speedup in

the subjects where both modes timed out is always 1×. Similarly,

when we measure coverage, the coverage in the subjects where

both modes terminated, i.e., completed the analysis before hitting

the timeout, is always identical. To separate the subjects where the

results are trivially identical, we report the average (and median)

over a subset of the subjects depending on the evaluated metric:

When measuring analysis time, we consider the subset of the sub-

jects where at least one of the modes terminated. When measuring

coverage, we consider the subset of the subjects where at least one

of the modes timed out. In [53, Section C.1.1], we additionally report

the average (and median) when computed over all the subjects.

We ran our experiments on several machines (Intel i7-6700 @

3.40GHz with 32GB RAM) with Ubuntu 20.04.

9We noticed that some of the APIs from libosip that were used in [52] are similar,
i.e., di�erent APIs with the same internal functionality. The analysis of such APIs
leads to the same results, therefore, we excluded them from the evaluation to avoid
redundancy.
10In libosip, libtasn1, and libpng, the capacity settings were set similarly to the experi-
ments from [52].

Table 2: Benchmarks.

Version SLOC #Subjects Capacity
libosip 5.2.1 18,783 35 10
wget 1.21.2 100,785 31 200
libtasn1 4.16.0 15,291 13 100
libpng 1.6.37 56,936 12 200
apr 1.6.3 60,034 20 50
json-c 0.15 8,167 5 100
busybox 1.36.0 198,500 30 100

7.3 Results: PAT vs. CFG

In this experiment, we compare between the performance of the

state mergingmodes: PAT andCFG. The results are shown in Table 3

and Figure 4.

Analysis Time. Column Speedup in Table 3 shows the (average,

median, minimum, and maximum) speedup of PAT compared to

CFG in the subjects where at least one of the modes terminated.

Column # shows the number of considered subjects out of the total

number of subjects. In libosip, wget, apr , json-c, and busybox, PAT

was signi�cantly faster in many subjects, and in libtasn1 and libpng,

the analysis times were roughly identical. Figure 4a breaks down

the speedup of PAT compared to CFG per subject. Overall, there

were 12 subjects where PAT was slower than CFG. In libosip, PAT

was slower only in one API. In this case, the slowdown of 0.03×

(from 20 to 554 seconds) was caused by a small number of queries

(9) that our solving procedure (Section 5) failed to solve, and whose

solving using the SMT solver required most of the analysis time.

In wget, PAT was slower in two APIs. In one case, the slowdown

was caused by the computational overhead of the incremental state

merging approach. In the other case, the slowdown was caused by a

relatively high number of queries that our solving procedure failed

to solve. In libtasn1, PAT was slower in seven APIs, but the time

di�erence in these cases was rather minor (roughly 10 seconds). In

libpng, PAT was slightly slower in one API due to the computational

overhead of extracting regular patterns. In busybox, PAT was slower

in one utility with a minor time di�erence of two seconds. Column

Di�. in Table 3 shows the di�erence between PAT and CFG in terms

of the total time required to analyze all the subjects. Note that the

time di�erence is interpreted as zero in subjects where both modes

are timed out. In libosip, wget, apr , and busybox, PAT achieved a

considerable reduction of roughly 8, 4, 1, and 3 hours, respectively.

In json-c, PAT achieved a reduction of roughly 20 minutes, and in

libtasn1 and libpng, the time di�erence was minor. Figure 4b breaks

down the time di�erence between PAT and CFG per subject.

Coverage. Column Coverage in Table 3 shows the (average, me-

dian, minimum, and maximum) relative increase in line coverage of

PAT over CFG in the subjects where at least one of the modes timed

out. Again, column # shows the number of considered subjects. In

libosip and wget, PAT achieved higher coverage in many cases. In

libtasn1, PAT resorted to standard state merging in most cases, as it

did not �nd regular (and formula) patterns. Therefore, the results

were similar to those of CFG, and coverage was not improved. In

libpng, the coverage was roughly identical in all the APIs except for

two APIs where PAT achieved an improvement of 8.69% and 18.33%.

In apr , the coverage was identical in all the APIs except for two

cases where PAT had an increase of 16.62% and a decrease of 2.12%.

1147

State Merging with�antifiers in Symbolic Execution ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

In json-c, there was only one API where one of the modes timed

out, and in this case, CFG achieved higher coverage. In busybox,

there were 23 cases where at least one of the modes timed out.

In four cases, PAT achieved an improvement of 3.98%-15.45%, and

in two cases, CFG achieved an improvement of 1.15% and 61.78%.

In the remaining 17 cases, the coverage was identical. (In most of

these cases, PAT did not �nd formula patterns, resulting in identical

explorations.) Column Di�. in Table 3 shows the di�erence between

PAT and CFG in terms of the total number of covered lines across

all the subjects. Again, note that there is no di�erence in coverage

in subjects where both modes terminated. It is possible to have an

improvement in average coverage but not in total line di�erence

(apr) and vice versa (busybox). This happens due to shared code

that is covered by only one mode in one subject but covered by the

other mode in other subjects. Figure 4c breaks down the coverage

improvement of PAT over CFG per subject.

Scaling. The main obstacle in applying state merging originates

from the introduction of disjunctive constraints and ite expressions,

especially when the number of states to be merged is high. We eval-

uate the ability of our approach to cope with a particular aspect of

this challenge where the states are generated by loops iterating over

large data objects, a frequent situation in our experience. Techni-

cally, we conducted a case study on libosip, one of our benchmarks,

where we gradually increase the capacity of symbolic-size objects.

When the capacity is increased, the size of the symbolic-size objects

is potentially increased as well. This typically leads to additional

forks, for example, in loops that operate on symbolic-size objects.

As we apply state merging in such loops, this eventually results

in more complex merging operations. Thus, increasing the capac-

ity allows us to measure how each mode scales w.r.t. the number

of merged states. In this experiment, we run each API in each of

the state merging modes (PAT and CFG) under several di�erent

capacity settings. The results are shown in Table 4.

As can be seen, PAT achieved better results than CFG in all the

capacity settings. In general, when the capacity is increased, there

are typically more forks and queries, which makes the analysis of

size-dependent loops harder for both modes. Therefore, the cover-

age improvement was less signi�cant under the highest capacity

settings (100 and 200) compared to the lower capacity settings. Note

also that under those capacity settings, there were only �ve APIs

in which at least one of the modes terminated. We observed that

in these APIs, the analysis time increased in both modes when

the capacity was increased. However, with CFG, the analysis time

increased more signi�cantly, so the speedup under the highest ca-

pacity setting (200) was greater. This indicates that our approach

is less sensitive to the input capacity and hence to the resulting

number of merged states.

RQ1 Answer: PAT outperforms CFG in many cases and scales

better in executing complex state merging operations.

7.4 Results: PAT vs. BASE

In this experiment, we compare the performance of PAT and BASE,

i.e., standard symbolic execution that uses the forking approach.

The results are shown in Table 5.

Column Speedup shows the (average andmedian) speedup of PAT

compared to BASE in the subjects where at least one of the modes

terminated. As can be seen, PAT achieved a considerable speedup

in the majority of the benchmarks. Overall, there were nine subjects

in which PAT was slower than BASE. In three of these cases, the

time di�erence was minor (roughly 5 seconds). In the other cases,

the slowdown was caused by the computational overhead of the

incremental state merging approach and the complex constraints

that were introduced during the state merging. Regarding timeouts,

there were 20 subjects in which BASE timed out and PAT terminated,

and only one subject in which PAT timed out and BASE terminated.

Column Coverage shows the (average and median) relative in-

crease in line coverage of PAT over BASE in the subjects where at

least one of the modes timed out. PAT achieved higher coverage

in many subjects, especially in libosip and libpng. In most of the

cases in libtasn1, apr , and json-c, both modes covered most of the

reachable lines in a relatively early stage, so the coverage was simi-

lar. In wget and busybox, PAT achieved higher coverage in some of

the cases, but there were also cases in which BASE achieved higher

coverage. In general, this is a consequence of the known tradeo�

between forking and state merging: The forking approach explores

more paths but generates less complex constraints.

In addition, we observed that there were four subjects in which

BASE ran out of memory. In two of these cases, BASE �nished the

analysis before PAT , but its analysis was incomplete since KLEE

prunes the search space once the memory limit is reached.

For space reasons, the breakdown of the improvement of PAT

over BASE per subject is shown in [53, Section C.1.2].

RQ2 Answer: PAT outperforms BASE in many cases, however, the

known tradeo� between state merging and forking remains.

7.5 Results: Component Breakdown

Now, we evaluate the signi�cance of the components used in our

pattern-based state merging approach (i.e., PAT).

7.5.1 Solving Procedure. To evaluate our solving procedure (Sec-

tion 5), we ran each subject in two versions of PAT : one that relies

only on the SMT solver (vanilla Z3) and another one that uses our

solving procedure. Both modes are run with the incremental state

merging approach enabled.

To evaluate the impact of the solving procedure, we show in

Table 6 its e�ect on analysis time and coverage in the relevant

subsets. Here, the two modes have the same exploration order,

so we use the path coverage metric as well. In libosip, wget, apr ,

json-c, and busybox, our solving procedure generally leads to lower

analysis times and higher (line or path) coverage. The results were

mostly similar in libtasn1 and libpng since the number of quanti�ed

queries was relatively low. The only exception was one of the APIs

in libpng, where the path coverage was increased by 39.51%.

7.5.2 Incremental State Merging. To evaluate the incremental state

merging approach (Section 4), we run each subject in two versions

of PAT : one that disables incremental state merging and another

one that enables it. The results are shown in Table 7.

In libosip, there were relatively many loops where incremental

state merging was successfully applied, i.e., reduced the number of

explored paths. This resulted in a signi�cant speedup and higher

line coverage. Inwget, there were four APIs where incremental state

merging could be applied, and in two of these cases, the coverage

1148

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA David Trabish, Noam Rinetzky, Sharon Shoham, and Vaibhav Sharma

Table 3: Comparison of PAT vs. CFG.

Time Coverage (%)
Speedup (×) Di�. (seconds) Di�. (lines)

Avg. Med. Min. Max. # Avg. Med. Min. Max.
libosip 16/35 7.18 5.50 0.03 180.00 27668 28/35 20.45 9.00 0.00 88.63 291
wget 11/31 2.69 1.67 0.54 14.69 12942 24/31 15.02 0.00 -40.00 300.00 89
libtasn1 7/13 0.94 0.95 0.90 0.96 -41 6/13 0.00 0.00 0.00 0.00 0
libpng 1/12 0.70 0.70 0.70 0.70 -9 11/12 2.03 0.00 -2.88 18.33 104
apr 10/20 3.50 1.63 1.00 138.46 4375 11/20 1.31 0.00 -2.12 16.62 0
json-c 4/5 3.16 2.97 2.00 5.76 1149 1/5 0.81 0.81 0.81 0.81 1
busybox 8/30 1.68 1.07 0.92 16.20 10100 23/30 -1.08 0.00 -61.78 15.45 74

Subjects

sp
ee

du
p

(x
)

0.1

1

10

100

(a) Speedup in analysis time (×) in the sub-

jects where at least one of the modes termi-

nated (in log-scale).

Subjects

di
ff.

 (s
ec

on
ds

)

-1000

0

1000

2000

3000

4000

(b) Di�erence in analysis time (seconds) in

the subjects where at least one of themodes

terminated.

Subjects

co
ve

ra
ge

 (%
)

-100

-50

0

50

100

(c) Relative increase in coverage (%) in the

subjects where at least one of the modes

timed out.

Figure 4: Breakdown of the improvement of PAT over CFG per subject.

Table 4: Comparison of PAT vs. CFG under di�erent capacity

settings (column Capacity) in libosip.

Capacity Speedup (×) Coverage (%)
Avg. Med. # Avg. Med.

10 16/35 7.18 5.50 28/35 20.45 9.00
20 13/35 4.58 5.53 29/35 23.41 19.29
50 12/35 1.99 2.43 30/35 15.19 10.63
100 5/35 2.99 2.75 30/35 10.23 2.32
200 5/35 4.81 6.11 30/35 4.22 0.00

Table 5: Comparison of PAT vs. BASE.

Speedup (×) Coverage (%)
Avg. Med. # Avg. Med.

libosip 17/35 11.21 3.10 28/35 11.43 1.88
wget 12/31 2.75 3.72 24/31 -2.32 0.00
libtasn1 7/13 4.94 9.30 7/13 1.49 0.00
libpng 1/12 2.46 2.46 11/12 23.59 7.14
apr 10/20 8.40 3.91 14/20 -0.15 0.00
json-c 4/5 1.36 3.09 2/5 0.82 0.82
busybox 9/30 2.43 2.51 22/30 -2.76 0.00

was improved by 33.33% and 300.00%. In apr , there were four APIs

where incremental state merging could be applied, and in one of

these cases, the analysis time was reduced by 138.46× and the

coverage was improved by 16.62%. In busybox, there were two

utilities where incremental state merging could be applied, and in

these cases, the coverage was improved by 11.33% and 15.45%. In

libtasn1, libpng, and json-c, there were no loops where incremental

state merging could be applied. In some cases, this resulted in a

minor performance penalty due to the computational overhead of

the approach, which mainly comes from the need to maintain the

snapshots of the non-active symbolic states in the execution tree.

Table 6: Impact of solving procedure.

Speedup (×) Coverage (%)
Line Path

Avg. Med. # Avg. Med. Avg. Med.
libosip 16/35 1.55 1.57 19/35 0.26 0.00 89.31 72.82
wget 11/31 4.28 3.62 27/31 14.81 0.00 110.17 30.94
libtasn1 7/13 0.99 0.99 6/13 0.00 0.00 -0.74 -0.24
libpng 1/12 1.03 1.03 11/12 -0.23 0.00 2.62 0.00
apr 10/20 2.86 3.49 10/20 0.00 0.00 38.31 5.57
json-c 4/5 2.89 2.33 1/5 0.00 0.00 79.49 79.49
busybox 8/30 1.29 1.09 23/30 0.52 0.00 9.53 1.65

Table 7: Impact of incremental state merging.

Speedup (×) Coverage (%)
Avg. Med. # Avg. Med.

libosip 16/35 6.78 2.80 28/35 18.98 5.83
wget 11/31 0.97 0.97 20/31 16.66 0.00
libtasn1 7/13 0.96 0.98 6/13 0.00 0.00
libpng 1/12 0.96 0.96 11/12 2.35 0.00
apr 11/20 1.60 1.00 11/20 1.71 0.00
json-c 4/5 1.01 1.01 1/5 0.00 0.00
busybox 8/30 0.98 1.00 20/30 0.76 0.00

RQ3 Answer: All the components contribute.

7.6 Found Bugs

We found two bugs during our experiments with busybox. In both

cases, a null-pointer dereference occurred in the implementation of

realpath in klee-uclibc, KLEE’s modi�ed version of uClibc [54]. We

reported the bugs, which were con�rmed and �xed by the o�cial

maintainers [2]. We note that these bugs were detected by PAT and

BASE, but were not found by CFG due to a timeout.

1149

State Merging with�antifiers in Symbolic Execution ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

7.7 Threats to Validity

First, our implementationmay have bugs. To validate its correctness,

we performed a separate experiment where each subject was run

in the PAT mode with a timeout of one hour. During these runs,

we validated that every executed state merging operation is correct

w.r.t. Theorem 3.7. In addition, for every query that our solving

procedure was able to solve, we validated the consistency of the

reported result w.r.t. the underlying SMT solver.

Second, our choice of benchmarks might not be representative

enough. That said, we chose a diverse set of real-world benchmarks

used in prior work [35, 47, 52]. In addition, we used benchmarks

that process inputs of both binary and textual formats.

Third, we evaluated our approach in the context of the symbolic-

size model [52]. To address the threat that our approach may be

bene�cial only in the context of that particular memory model, we

performed an additional experiment using the standard concrete-

size memory model. In this experiment, we set the concrete sizes of

the input objects according to the capacity con�guration in Table 2,

and apply state merging in loops whose conditions depend on these

sizes, as we do in our original experiments. The results, shown

in [53, Section C.3], lead to conclusions similar to the ones drawn

from the original experiments.

Fourth, the search heuristic might a�ect the coverage when

the exploration does not terminate. To address the threat that our

results may be valid only for the DFS search heuristic, we performed

an additional experiment using the default search heuristic in KLEE.

The results, shown in [53, Section C.4], are comparable.

7.8 Discussion

Taking a high-level view of the experiments, we observe that our

approach brings signi�cant gains w.r.t. both baselines in most of the

benchmarks (libosip, wget, apr , json-c, and busybox). This is because

these benchmarks contain an abundant number of size-dependent

loops that generate expressions that are linearly dependent on the

number of repetitive parts in the path constraints, which leads to

the detection of many regular (and formula) patterns. In libtasn1

and libpng, however, most of the size-dependent loops generate

expressions that cannot be synthesized with our approach, for

example, aggregate values such as the sum of array contents. As a

result, relatively few formula patterns are detected. Nevertheless,

in these cases, our approach still preserves the bene�ts of standard

state merging w.r.t. standard symbolic execution.

8 RELATED WORK

Compact symbolic execution [50] uses quanti�ers to encode the

path conditions of cyclic paths that follow the same control �ow

path in each iteration and update all the variables in a regular man-

ner. This allows them to encode the e�ect of unbounded repetitions

of some of the cyclic paths in the program. In contrast, we seek

regularity at the level of the constraints and, therefore, do not rely

on uniformity in the control �ow graph. In memspn (Section 1), for

example, they can only summarize the paths in which either all

the characters of s are matched with the �rst character of chars

(the then branch) or the �rst character of s is unmatched (the

else branch). In contrast, our approach can summarize all paths

up to a given bound using two merged states. Furthermore, [50]

solves quanti�ed queries using a standard solver as opposed to our

specialized solving procedure.

Godefroid et al. [32] propose a dynamic approach for inferring

invariants in input-dependent loops, which allows them to partially

summarize the loop’s e�ect on induction variables. Loop-extended

symbolic execution [46] summarizes input-dependent loops. It uses

static analysis to infer linear relations between variables and trip

count variables tracking the number of iterations in the loop. In

contrast, our approach does not rely on induction variables or the

number of loop iterations. Kapus et al. [35] summarize string loops

by synthesizing calls to standard string functions. S-Looper [55]

introduces string constraints that can be solved by solvers that

support the string theory. Our approach is not restricted to string

loops and does not require a solver supporting string theory.

Veritesting [13] improves the performance of symbolic execu-

tion by merging similar execution paths. Given a symbolic branch,

veritesting summarizes side e�ects from both branch sides to avoid

path explosion. Java Ranger [49] extends veritesting of Java pro-

grams to support dynamically dispatched methods, by using the

runtime information available during the analysis. MultiSE [48]

summarizes updates to values by e�ciently guarding each value

with a path predicate. Kuznetsov et al. [37] merge symbolic states

based on a query count heuristic that estimates if the merging

would reduce the solving time in the future. Trabish et al. [52]

perform state merging in loops that depend on objects whose size

is symbolic. They reduce the size of the encoding in the resulting

merged states using the execution tree, but still rely on disjunctions

and ite expressions, therefore unable to achieve the reduction ob-

tained with our approach. We explicitly compared our technique

with theirs (referred to as CFG in Section 7) and show that our

approach performs better in many cases. The works mentioned

above do not address the encoding explosion problem caused by

using disjunctions and ite expressions.

There are many works on handling quanti�ed formulas [14,

16, 23, 27, 30, 43–45]. Our solving procedure (Section 5) mainly

targets satis�able queries, and adapts ideas from E-matching [23]

and model-based quanti�er instantiation [30] to our speci�c needs.

9 CONCLUSIONS AND FUTUREWORK

We propose a state merging approach that signi�cantly reduces the

encoding complexity of merged symbolic states and show through

our evaluation that this is a promising direction toward scaling

state merging in symbolic execution.

Our approach automatically detects regular patterns to partition

similar symbolic states into merging groups. For each group, we

synthesize a formula pattern that enables an e�cient encoding

of the merged symbolic state using quanti�ers. Extracting more

complex patterns, e.g., beyond linear formulas, can further improve

the applicability of our approach.

Acknowledgements. This research was partially funded by the

Israel Science Foundation (ISF) grants No. 1996/18 and No. 1810/18

and by Len Blavatnik and the Blavatnik Family foundation.

10 DATA AVAILABILITY

Our replication package is available at [3]. It contains a Docker

image with all the resources needed to run the experiments.

1150

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA David Trabish, Noam Rinetzky, Sharon Shoham, and Vaibhav Sharma

REFERENCES
[1] 2023. https://github.com/davidtr1037/klee-quanti�ers.
[2] 2023. https://github.com/klee/klee-uclibc/pull/47.
[3] 2023. https://doi.org/10.6084/m9.�gshare.21990386.v8.
[4] 2023. busybox. https://busybox.net/.
[5] 2023. GCov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[6] 2023. GNU libtasn1. https://www.gnu.org/software/libtasn1/.
[7] 2023. GNU oSIP. https://www.gnu.org/software/osip/.
[8] 2023. GNU Wget. https://www.gnu.org/software/wget/.
[9] 2023. json-c. https://github.com/json-c/json-c/.
[10] 2023. libpng. http://www.libpng.org/pub/png/libpng.html.
[11] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd ed.). Addison Wesley.
[12] APR. 2023. Apache Portable Runtime.
[13] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing Symbolic Execution with Veritesting. In Proc. of the 36th International
Conference on Software Engineering (ICSE’14) (Hyderabad, India). https://doi.org/
10.1145/2568225.2568293

[14] Kshitij Bansal, AndrewReynolds, TimKing, Clark Barrett, and ThomasWies. 2015.
Deciding local theory extensions via e-matching. In Computer Aided Veri�cation:
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II 27. Springer, 87–105.

[15] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems -
28th International Conference, TACAS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I, Dana Fisman and Grigore Rosu (Eds.). Springer.
https://doi.org/10.1007/978-3-030-99524-9_24

[16] Aaron R Bradley, Zohar Manna, and Henny B Sipma. 2006. What’s decidable
about arrays?. In International Workshop on Veri�cation, Model Checking, and
Abstract Interpretation. Springer, 427–442. https://doi.org/10.1007/11609773_28

[17] Tegan Brennan, Seemanta Saha, Tev�k Bultan, and Corina S Păsăreanu. 2018.
Symbolic path cost analysis for side-channel detection. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 27–37.
https://doi.org/10.1145/3213846.3213867

[18] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir.
2019. CaSym: Cache aware symbolic execution for side channel detection and
mitigation. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 505–521.
https://doi.org/10.1109/SP.2019.00022

[19] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08) (San Diego, CA, USA).

[20] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.
2006. EXE: Automatically Generating Inputs of Death. In Proc. of the 13th ACM
Conference on Computer and Communications Security (CCS’06) (Alexandria, VA,
USA). https://doi.org/10.1145/1455518.1455522

[21] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (Feb. 2013), 82–90. https://doi.org/10.
1145/2408776.2408795

[22] Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic Cross-
checking of Floating-Point and SIMDCode. In Proc. of the 6th European Conference
on Computer Systems (EuroSys’11) (Salzburg, Austria). https://doi.org/10.1145/
1966445.1966475

[23] Leonardo de Moura and Nikolaj Bjørner. 2007. E�cient E-Matching for SMT
Solvers. InAutomated Deduction – CADE-21, Frank Pfenning (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 183–198.

[24] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[25] Leonardo deMoura andNikolaj Bjørner. 2008. Z3: An E�cient SMT Solver. In Proc.
of the 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08) (Budapest, Hungary).

[26] Leonardo De Moura and Nikolaj Bjørner. 2011. Satis�ability modulo theories:
introduction and applications. Commun. ACM 54, 9 (2011), 69–77. https://doi.
org/10.1145/1995376.1995394

[27] David Detlefs, Greg Nelson, and James B Saxe. 2005. Simplify: a theorem prover
for program checking. Journal of the ACM (JACM) 52, 3 (2005), 365–473.

[28] Bruno Dutertre. 2014. Yices 2.2. In Proc. of the 26th International Conference on
Computer-Aided Veri�cation (CAV’14) (Vienna, Austria).

[29] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-vectors and
Arrays. In Proceedings of the 19th International Conference on Computer Aided

Veri�cation (Berlin, Germany) (CAV’07). Springer-Verlag, Berlin, Heidelberg, 519–
531. http://dl.acm.org/citation.cfm?id=1770351.1770421

[30] Yeting Ge and Leonardo Mendonça de Moura. 2009. Complete Instantiation
for Quanti�ed Formulas in Satis�abiliby Modulo Theories. In Computer Aided
Veri�cation, 21st International Conference, CAV 2009, Grenoble, France, June 26 -
July 2, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5643), Ahmed
Bouajjani and Oded Maler (Eds.). Springer, 306–320. https://doi.org/10.1007/978-
3-642-02658-4_25

[31] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In Proc. of the 15th Network and Distributed System
Security Symposium (NDSS’08) (San Diego, CA, USA).

[32] Patrice Godefroid and Daniel Luchaup. 2011. Automatic Partial Loop Sum-
marization in Dynamic Test Generation. In Proc. of the International Sympo-
sium on Software Testing and Analysis (ISSTA’11) (Toronto, Canada). https:
//doi.org/10.1145/2001420.2001424

[33] Trevor Hansen, Peter Schachte, and Harald Søndergaard. 2009. State Joining
and Splitting for the Symbolic Execution of Binaries. In Proc. of the 2009 Runtime
Veri�cation (RV’09) (Grenoble, France). https://doi.org/10.1007/978-3-642-04694-
0_6

[34] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for
In-house Debugging. In Proc. of the 34th International Conference on Software
Engineering (ICSE’12) (Zurich, Switzerland). https://doi.org/10.1109/ICSE.2012.
6227168

[35] Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, and Cristian
Cadar. 2019. Computing Summaries of String Loops in C for Better Testing
and Refactoring. In Proc. of the Conference on Programing Language Design and
Implementation (PLDI’19) (Phoenix, AZ, USA). https://doi.org/10.1145/3314221.
3314610

[36] James C. King. 1976. Symbolic execution and program testing. Communications
of the Association for Computing Machinery (CACM) 19, 7 (1976), 385–394.

[37] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
E�cient state merging in symbolic execution. In Proc. of the Conference on
Programing Language Design and Implementation (PLDI’12) (Beijing, China).
https://doi.org/10.1145/2345156.2254088

[38] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proc. of the 2nd International
Symposium on Code Generation and Optimization (CGO’04) (Palo Alto, CA, USA).
https://doi.org/10.1109/CGO.2004.1281665

[39] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering. ACM, 691–701. https:
//doi.org/10.1145/2884781.2884807

[40] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proc. of the 35th
International Conference on Software Engineering (ICSE’13) (San Francisco, CA,
USA). https://doi.org/10.1109/ICSE.2013.6606623

[41] Corina S Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run
side-channel analysis using Symbolic Execution and Max-SMT. In 2016 IEEE 29th
Computer Security Foundations Symposium (CSF). IEEE, 387–400.

[42] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: Integrating Symbolic
Execution with Model Checking for Java Bytecode Analysis. In Proc. of the 28th
IEEE International Conference on Automated Software Engineering (ASE’13) (Palo
Alto, CA, USA).

[43] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. 2018. Revisiting enumer-
ative instantiation. In Tools and Algorithms for the Construction and Analysis of
Systems: 24th International Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part II 24. Springer, 112–131.

[44] Andrew Reynolds, Cesare Tinelli, and Leonardo De Moura. 2014. Finding con-
�icting instances of quanti�ed formulas in SMT. In 2014 Formal Methods in
Computer-Aided Design (FMCAD). IEEE, 195–202.

[45] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and
Clark Barrett. 2013. Quanti�er instantiation techniques for �nite model �nding
in SMT. In Automated Deduction–CADE-24: 24th International Conference on Au-
tomated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings 24. Springer,
377–391.

[46] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. 2009.
Loop-extended Symbolic Execution on Binary Programs. In Proc. of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA’09) (Chicago, IL, USA).
https://doi.org/10.1145/1572272.1572299

[47] Daniel Schemmel, Julian Büning, Frank Busse,Martin Nowack, and Cristian Cadar.
2022. A Deterministic Memory Allocator for Dynamic Symbolic Execution. In
36th European Conference on Object-Oriented Programming (ECOOP 2022) (Berlin,
Germany). 9:1–9:26.

[48] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:
Multi-Path Symbolic Execution Using Value Summaries. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy)

1151

https://github.com/davidtr1037/klee-quantifiers
https://github.com/klee/klee-uclibc/pull/47
https://doi.org/10.6084/m9.figshare.21990386.v8
https://busybox.net/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.gnu.org/software/libtasn1/
https://www.gnu.org/software/osip/
https://www.gnu.org/software/wget/
https://github.com/json-c/json-c/
http://www.libpng.org/pub/png/libpng.html
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11609773_28
https://doi.org/10.1145/3213846.3213867
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
http://dl.acm.org/citation.cfm?id=1770351.1770421
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1109/ICSE.2012.6227168
https://doi.org/10.1109/ICSE.2012.6227168
https://doi.org/10.1145/3314221.3314610
https://doi.org/10.1145/3314221.3314610
https://doi.org/10.1145/2345156.2254088
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1145/1572272.1572299

State Merging with�antifiers in Symbolic Execution ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA,
842–853. https://doi.org/10.1145/2786805.2786830

[49] Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant, and
Willem Visser. 2020. Java Ranger: Statically Summarizing Regions for E�cient
Symbolic Execution of Java. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 123–134. https://doi.org/10.1145/
3368089.3409734

[50] Jiri Slaby, Jan Strejcek, and Marek Trtík. 2013. Compact Symbolic Execution. In
Automated Technology for Veri�cation and Analysis - 11th International Symposium,
ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings (Lecture Notes in
Computer Science, Vol. 8172), Dang VanHung andMizuhito Ogawa (Eds.). Springer,
193–207. https://doi.org/10.1007/978-3-319-02444-8_15

[51] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. 2001. A
Decision Procedure for an Extensional Theory of Arrays. In Proc. of the 16th IEEE

Symposium on Logic in Computer Science (LICS’01) (Boston, MA, USA).
[52] David Trabish, Shachar Itzhaky, and Noam Rinetzky. 2021. A Bounded Symbolic-

Size Model for Symbolic Execution. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. Association for Computing Machinery, New York, NY,
USA, 1190–1201. https://doi.org/10.1145/3468264.3468596

[53] David Trabish, Noam Rinetzky, Sharon Shoham, and Vaibhav Sharma. 2023. State
Merging with Quanti�ers in Symbolic Execution. arXiv:arXiv:2308.12068

[54] uClibc 2022. uClibc. https://www.uclibc.org/.
[55] Xiaofei Xie, Yang Liu, Wei Le, Xiaohong Li, and Hongxu Chen. 2015. S-looper:

Automatic Summarization for Multipath String Loops. In Proc. of the International
Symposium on Software Testing and Analysis (ISSTA’15) (Baltimore, MD, USA).

Received 2023-02-02; accepted 2023-07-27

1152

https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1007/978-3-319-02444-8_15
https://doi.org/10.1145/3468264.3468596
https://arxiv.org/abs/arXiv:2308.12068
https://www.uclibc.org/

	Abstract
	1 Introduction
	2 Preliminaries
	3 State Merging with Quantifiers
	3.1 Partitioning Merging Groups via Regular Patterns
	3.2 Pattern-Based State Merging
	3.3 Synthesizing Formula Patterns

	4 Incremental State Merging
	5 Solving Quantified Queries
	6 Implementation
	7 Evaluation
	7.1 Benchmarks
	7.2 Setup
	7.3 Results: PAT vs. CFG
	7.4 Results: PAT vs. BASE
	7.5 Results: Component Breakdown
	7.6 Found Bugs
	7.7 Threats to Validity
	7.8 Discussion

	8 Related Work
	9 Conclusions and Future Work
	10 Data Availability
	References

