State Merging with Quantifiers in Symbolic Execution

David Trabish
Tel Aviv University
Tel Aviv, Israel
davivtra@post.tau.ac.il

Noam Rinetzky
Tel Aviv University
Tel Aviv, Israel
maon@cs.tau.ac.il

Sharon Shoham
Tel Aviv University
Tel Aviv, Israel
sharon.shoham@cs.tau.ac.il

Vaibhav Sharma
University of Minnesota
Minneapolis, USA
vaibhav@umn.edu

ABSTRACT
We address the problem of constraint encoding explosion which hinders the applicability of state merging in symbolic execution. Specifically, our goal is to reduce the number of disjunctions and if-then-else expressions introduced during state merging. The main idea is to dynamically partition the symbolic states into merging groups according to a similar uniform structure detected in their path constraints, which allows to efficiently encode the merged path constraint and memory using quantifiers. To address the added complexity of solving quantified constraints, we propose a specialized solving procedure that reduces the solving time in many cases. Our evaluation shows that our approach can lead to significant performance gains.

CCS CONCEPTS
• Software and its engineering:

KEYWORDS
Symbolic Execution, State Merging

ACM Reference Format:

1 INTRODUCTION
Symbolic execution is a powerful program analysis technique that has gained significant attention over the last years in both academic and industrial areas, including software engineering, software testing, programming languages, program verification, and cybersecurity. It lies at the core of many applications, such as high-coverage test generation [19, 20, 42], bug finding [19, 31], debugging [34], automatic program repair [39, 40], cross checking [22, 35], and side-channel analysis [17, 18, 41]. In symbolic execution, the program is run with an unconstrained symbolic input, rather than with a concrete one. Whenever the execution reaches a branch that depends on the symbolic input, an SMT solver [26] is used to determine the feasibility of each branch side, and the feasible paths are further explored while updating their path constraints with the corresponding constraints. Once the execution of a given path is completed, the solver provides a satisfying assignment for the corresponding path constraints, from which a concrete test case that replays that path can be generated.

A key remaining challenge in symbolic execution is path explosion [21]. State merging [33, 37] is a well-known technique for mitigating this problem, which trades the number of explored paths with the complexity of the generated constraints. More specifically, merging multiple symbolic states results in a symbolic state where the path constraint is expressed using a disjunction of constraints, and the memory contents are expressed using ite (if-then-else) expressions.

Unfortunately, the introduction of disjunctive constraints and ite expressions makes constraint solving harder and slows down the exploration, especially when the number of states being merged is high. Consider, for example, the function memspn from Section 1 which is based on the implementation of strcpy in uClibc [54].1 memspn receives a buffer s, the size of the buffer n, and a string char s, and returns the size of the initial segment of s which consists entirely of characters in char s. Suppose that memspn is called with a symbolic buffer s, a symbolic size n bounded by some constant m, and the constant string “a”. The exploration of the loop at lines 3-8 results in O(m) symbolic states. If we merge these symbolic states, then the encoding of the merged symbolic state, which records, among others, the path constraint and the value of variable count, is of size at least linear in m. Now, suppose that the merged return value of memspn is used later, for example, in the parameter s in another call of memspn. In that case, if we perform a similar merging operation, then the encoding of the merged symbolic state will be of size at least quadratic in m since the merged value propagates to the path constraints. Such encoding explosion is typically encountered during the analysis of real-world programs, thus drastically limiting the effectiveness of state merging in practice.

We propose a state merging approach that reduces the encoding complexity of the path constraints and the memory contents, while

1 strcpy receives null-terminated buffers, slightly complicating the presentation.
preserving soundness and completeness w.r.t. standard symbolic execution. At a high level, our approach takes as an input the execution tree [36], which characterizes the symbolic branches occurring during the symbolic execution of the analyzed code fragment, and dynamically detects regular patterns in the path constraints of the symbolic states in the tree, which allows us to partition them into merging groups of states whose path constraints have a similar uniform structure. This enables us to encode the merged path constraints using quantified formulas, which in turn may also simplify the encoding of ife expressions representing the merged memory contents.

We observed that the generic method employed by the SMT solver to solve the resulting quantified queries often leads to subpar performance compared to the solving of the quantifier-free variant of the queries. To address this, we propose a specialized solving procedure that leverages the particular structure of the generated quantified queries, and resort to the generic method only if our approach fails.

We implemented our approach on top of KLEE [19] and evaluated it on real-world benchmarks. Our experiments show that our approach can have significant performance gains compared to state merging and standard symbolic execution.

2 PRELIMINARIES

State Merging. A symbolic state s consists of (i) a path constraint $s.pc$, (ii) a symbolic store $s.mem$ that associates variables V with symbolic expressions obtained from the symbolic inputs, (iii) and an instruction counter $s.ic$. Symbolic states are merge-compatible if they have the same instruction counter and contain the same variables in their stores.

Definition 2.1. The merged symbolic state resulting from the merging of the merge-compatible symbolic states $\{s_i\}_{i=1}^m$ is the symbolic state s defined as follows:

\[
s.ic \equiv s.ic, \ s.pc \equiv \bigvee_{i=1}^m s_i.pc, \\
 s.mem \equiv \lambda v \in V. \mergevar{s_i}_{i=1}^m(v)
\]

where the merged value of a variable v is defined by:

\[
\mergevar{s_i}_{i=1}^m(v) \equiv \\
\iff_{(s_i.pc, s_i.mem(v))}, \\
\iff_{(\ldots, \iff_{(s_{n-1}.pc, s_{n-1}.mem(v)), s_n.mem(v))})
\]

State merging is applied on a given code fragment, typically a loop or a function. Once the symbolic exploration of the code fragment is complete, the resulting symbolic states are partitioned into (merge-compatible) merging groups. Then, each merging group is transformed into a single merged symbolic state. Finally, the resulting merged symbolic states are added to the state scheduler [19] of the symbolic execution engine to continue the exploration.

Execution Trees. An execution tree [36] is a tree where every node n is associated with a symbolic state s and a symbolic condition $n.c$ corresponding to the taken branch such that the conditions associated with any two sibling nodes are mutually inconsistent and the condition of the root node is true. The execution tree characterizes the analysis of an arbitrary code fragment, which is not necessarily the whole program. The root node corresponds to the symbolic state that reached the entry point of the code fragment, and the leaf nodes correspond to the symbolic states that completed the analysis of the code fragment. For example, consider the symbolic execution of memset (Section 1) with a symbolic buffer s, a symbolic size n, and “a”, where n is bounded by 3. The corresponding execution tree is depicted in Figure 2, where the symbolic condition associated with each node is depicted on the incoming edge of the node. The node n_1 corresponds to the initial symbolic state (i.e., $n_1.s.pc \leq n \leq 3$), the nodes n_2, n_3, n_10, and n_14 correspond to paths where s is comprised of only a character, and the nodes n_5, n_9, and n_{13} correspond to paths where s contains a non-a character. For now, ignore the color of the nodes.

Given an execution tree t with root r, we denote the sequence of nodes on the path from the node n_1 to node n_k in t by $\pi_t(n_1, n_k)$ and write $\pi_t(n_k)$ when n_1 is the root r. Given a path $\pi_t(n_1, n_k) = [n_1, n_2, \ldots, n_k]$ in t, we define its tree path condition (tpc) and tree path condition tail (tpct):

\[
tpc_t(n_1, n_k) \equiv n_1.c \land tpc_{t_i}(n_i, n_k) \quad \forall n_i \leq k
\]

We write $\overline{tpc_{t_i}}(n, n_k) \equiv \overline{tpc_{t_i}(r, n)}$ and $\overline{tpc_t}(n) \equiv \overline{tpc_{t_i}(r, n)}$ as shorthands. We omit the tree subscript when it is clear from the context. For example, in the execution tree depicted in Figure 2:

\[
\pi_t(n_3, n_7) \equiv [n_3, n_4, n_7] \\
tpc_t(n_3, n_7) \equiv n > 0 \land s[0] = 97 \land n > 1 \\
\overline{tpc_t}(n_3, n_7) \equiv s[0] = 97 \land n > 1
\]

An execution tree t with root r is valid if $n.s.pc = r.s.pc \land tpc_{t_i}(n)$ for every node n. Note that $r.s$ is not necessarily the initial symbolic state of the whole program, so $tpc_t(n)$ is a suffix of the path constraints. From now on, we assume that all trees are valid.

Logical Notations. We encode symbolic path constraints and memory contents in first-order logic modulo theories using formulas and terms, respectively. A term is either a constant, a variable, or an application of a function to terms. A formula is either an application of a predicate symbol to terms or obtained by applying boolean connectives or quantifiers to formulas. Let φ, φ' be formulas and m a model. We write $\varphi \equiv \varphi'$ to note that φ and φ' are semantically equivalent and $\varphi \equiv \varphi'$ to note that they are syntactically equal. We write $m \models \varphi$ to note that m is a model of φ. For a term t, we denote by $m(t)$ the value assigned by m to t, and we write $t_1 \equiv t_2$ to denote that $m(t_1) = m(t_2)$ in any model m. We use the standard theory of arrays [51] and write $a[e]$ as a shorthand for $\text{select}(a, e)$.

Figure 1: Motivating example.
In this section, we describe our approach for state merging with quantifiers. We start with a motivating example and subsequently formalize our approach.

Motivating Example. Consider the symbolic states associated with the nodes n_5, n_9, and n_{13} from the execution tree in Figure 2, whose path conditions, i.e., $tpc(n_5)$, $tpc(n_9)$, and $tpc(n_{13})$, are:

- $n > 0 \land \neg s[0] = 97$
- $n > 0 \land s[0] = 97 \land n > 1 \land \neg s[1] = 97$
- $n > 0 \land s[0] = 97 \land n > 1 \land s[1] = 97 \land n > 2 \land \neg s[2] = 97$

The path constraint of the initial symbolic state (n_1, s) is $n \leq 3$, so applying standard state merging (Definition 2.1) on the symbolic states of the nodes above will result in a symbolic state whose path constraint is equivalent to:

$$n \leq 3 \land (tpc(n_5) \lor tpc(n_9) \lor tpc(n_{13}))$$

Note, however, that each of the disjuncts above has the following uniform structure: It uses k formulas (for $k = 0, 1, 2$) of the form $n > -s[i] = 97$ to encode that the size of the buffer (n) is big enough to contain k consecutive occurrences of a character, and another formula $n > k \land \neg s[k] = 97$. This uniformity is exposed when rewriting each disjunct using universal quantifiers as follows:

$$\forall i.1 \leq i \leq 0 \rightarrow n > i \land s[i \ldots i + 1] = 97 \land n > 0 \land \neg s[0] = 97$$
$$\forall i.1 \leq i \leq 1 \rightarrow n > i \land s[i \ldots i + 1] = 97 \land n > 1 \land \neg s[1] = 97$$
$$\forall i.1 \leq i \leq 2 \rightarrow n > i \land s[i \ldots i + 1] = 97 \land n > 2 \land \neg s[2] = 97$$

To exploit the common structure of the rewritten disjuncts, we can introduce an auxiliary variable (k) and obtain an equisatisfiable merged path constraint:

$$n \leq 3 \land (k = 0 \lor k = 1 \lor k = 2) \land$$
$$\forall i.1 \leq i \leq k \rightarrow n > i \land s[i \ldots i + 1] = 97 \land$$
$$(n > k \land \neg s[k] = 97)$$

The auxiliary variable allows us to achieve similar savings in the encoding of the merged memory contents. Consider, for example, the variable count. Its value in the symbolic states corresponding to n_5, n_9, and n_{13} is 0, 1, and 2, respectively, so its merged value with standard state merging is:

$$ite(tpc(n_5), 0, ite(tpc(n_9), 1, 2))$$

Note, however, that with the rewritten merged path constraint, the path constraints of the symbolic states corresponding to n_5, n_9, and n_{13} are now correlated with the values of k: 0, 1, and 2. As the values of count can be encoded as a function of those values, we can simply rewrite the complex ite expression above to k.

Our Approach. Our goal is to reduce the number of disjunctions and ite expressions introduced in standard state merging. Given a set of merge-compatible symbolic states, our state merging approach works as follows. First, we compute partitions of symbolic states based on the similarity of the path constraints (Section 3.1). Then, for each partition, we attempt to synthesize the merged symbolic state using universal quantifiers (Sections 3.2 and 3.3), and resort to standard state merging if that fails.

3.1 Partitioning Merging Groups via Regular Patterns

To identify similarity between symbolic states, we use the execution tree of the analyzed code fragment. Recall that the symbolic states in each merging group are associated with leaf nodes and respective paths in the execution tree. We abstract each path to a sequence of numbers using a specialized hash function, which allows us to detect similarity between paths based on a shared regular pattern.

Definition 3.1. A hash function h maps constraints (formulas) to numbers (\mathbb{N}). We say that h is valid for an execution tree t if for any two sibling nodes n_1 and n_2:

$$h(n_1, c) \neq h(n_2, c)$$

In the sequel, we assume a fixed arbitrary valid execution tree t and a fixed arbitrary valid hash function h for t. We now extend h to paths as follows:

Definition 3.2. The hash of a path $\pi(n_1, n_k) = [n_1, ..., n_k]$ in t is defined as follows:

$$h(\pi(n_1, n_k)) \neq h(n_1, c)h(n_2, c) \ldots h(n_k, c) \epsilon \mathbb{N}^*$$

Note that the validity of h ensures that every path in t is identified uniquely by its hash value.

Definition 3.3. A regular pattern is a tuple $(\omega_1, \omega_2, \omega_3)$, where $\omega_1, \omega_2, \omega_3 \epsilon \mathbb{N}^*$ are words (sequences) of numbers. Given leaf nodes $[n_j]_{j=1}^m$ in t, and numbers $[k_j]_{j=1}^m \epsilon \mathbb{N}$, we say that $([n_j, k_j])_{j=1}^n$
match the regular pattern \((\omega_1, \omega_2, \omega_3)\) if for every \(j = 1, \ldots, n\): \(h(\pi(n_j)) = \omega_1 \omega_2^j \omega_3\).

Definition 3.4. A set of leaf nodes \(\{n_j\}_{j=1}^n\) in \(t\) is called a regular partition if there exists a regular pattern \((\omega_1, \omega_2, \omega_3)\) and a set \(\{k_j\}_{j=1}^n \subseteq \mathbb{N}\) such that \(\{(n_j, k_j)\}_{j=1}^n\) match that pattern. A regular partitioning of leaf nodes in \(t\) is a partitioning into disjoint regular partitions.

Example 1. Consider a hash function \(h\) that operates on the abstract syntax tree (AST) of a formula and assigns the same pre-defined value to all the constant numerical terms. Such a hash function ensures that formulas with a similar shape will be assigned the same hash value, for example:

\[
\begin{align*}
 h(n > 0) &= h(n > 1) = h(n > 2) \\
 h(s[0]) &= h(s[1]) = h(s[97])
\end{align*}
\]

Figure 2 shows the resulting hash values of the nodes in the execution tree. For simplicity, we visualize every hash value as a distinct color: white (W), red (R), blue (B), green (G), and yellow (Y). Here, \(\{(n_5, 0), (n_9, 1), (n_{13}, 2)\}\) match the regular pattern \((W, GB, GY)\) since:

\[
h(\pi(n_5)) = WGY, h(\pi(n_9)) = WGBGY, h(\pi(n_{13})) = WGBGY
\]

A (possible) regular partitioning of the leaf nodes in Figure 2 is given in Table 1, which shows the two leftmost columns the regular patterns and their corresponding regular partitions.

In the following sections, we show how given a regular partition and its corresponding regular pattern, we can synthesize the resulting merged symbolic state using quantifiers.

3.2 Pattern-Based State Merging

A regular pattern indicates the potential existence of a uniform structure in the path conditions of the symbolic states in the associated regular partition. We formalize this intuition using formula patterns.

Definition 3.5. A formula pattern is a tuple \((\varphi_1, \varphi_2(x), \varphi_3(x))\), where \(\varphi_1\) is a closed formula, and \(\varphi_2(x)\) and \(\varphi_3(x)\) are formulas with a free variable \(x\). We say that \(\{(n_j, k_j)\}_{j=1}^n\) match the formula pattern \((\varphi_1, \varphi_2(x), \varphi_3(x))\), if for every \(j = 1, \ldots, n\):

\[
tpc(n_j) \models \varphi_1 \land \left(\bigwedge_{i=1}^{k_j} \varphi_2[i/x] \right) \land \varphi_3[k_j/x]
\]

The uniform structure exposed by formula patterns enables us to perform state merging with quantifiers.

Definition 3.6. Let \(\{n_j\}_{j=1}^n\) be a set of leaf nodes in \(t\) such that \(\{n_j, s\}_{j=1}^n\) are merge-compatible and \(\{(n_j, k_j)\}_{j=1}^n\) match the formula pattern \((\varphi_1, \varphi_2(x), \varphi_3(x))\). The pattern-based merged symbolic state of \(\{n_j, s\}_{j=1}^n\) is a symbolic state \(s\) whose path constraint, \(s_{pc}\), is:

\[
r.s.p \land (\bigvee_{k=1}^n \varphi_1 \land (\forall i. 1 \leq i \leq k \rightarrow \varphi_2[i/x]) \land \varphi_3[k/x])
\]

where \(k\) is a fresh constant, \(i\) is a fresh variable, and \(r\) is the root of \(t\).

The symbolic store of \(s\) is defined as follows. For every variable \(v\), if there exists a term \(t(x)\) with a free variable \(x\) such that \(t(k_j/x) \models n_j, s_{mem}(v)\) for every \(j = 1, \ldots, n\), then the value of \(v\) is encoded as \(s_{mem}(v) \models t(k/x)\). Otherwise, \(s_{mem}(v) \models \text{merge_var}(n_j, s)\) (Definition 2.1). Pattern-based state merging is sound and complete w.r.t. standard state merging. This is formalized in the following theorem:

Theorem 3.7. Under the premises of Definition 3.6, let \(s\) be the pattern-based merged symbolic state of \(\{n_j, s\}_{j=1}^n\), and let \(s'\) be their merged symbolic state obtained with standard state merging (Definition 2.1). The following holds for any model \(m\):

- \(m \models s_{pc}\) iff \(m[k \mapsto k'] \models s_{pc}\) for some \(k \in \mathbb{N}\).
- If \(m \models s_{pc}\) then \(m(s_{mem}(v)) = m(s_{mem}(v))\) for every variable \(v\).

Example 2. Consider the regular partition \(\{(n_5, 0), (n_9, 1), (n_{13}, 2)\}\) shown in the first row of Table 1. The formula pattern \((true, n > x - 1 \land s[x - 1] = 97, n > x - 8 \land s[x] = 97)\) is matched by \((\{(n_5, 0), (n_9, 1), (n_{13}, 2)\}\). The merged symbolic state induced by that formula pattern is shown in the rightmost column in Table 1 (pc and mem). Note that for the variable count, the term \(t(x) \equiv x\) satisfies:

\[
t[0/x] = n, t[1/x] = 1, t[2/x] = 2
\]

so the merged value of that variable can be simplified to \(k\). The merging of the other variables is rather trivial as the symbolic states being merged agree on their values.

3.3 Synthesizing Formula Patterns

So far, we have yet to discuss how formula patterns are obtained. We now describe an approach that attempts to synthesize a formula pattern given a regular pattern and its associated regular partition. As explained in Section 3.2, this enables us to perform state merging with quantifiers.

Our hash function \(h\), which we assume to be valid for \(t\) (Definition 3.1), has the following useful property:
Lemma 3.8. The following holds for any two nodes n_1 and n_2 in t:
1. If $h(\pi(n_1)) = h(\pi(n_2))$ then $n_1 = n_2$.
2. If $h(\pi(n_1))$ is a prefix of $h(\pi(n_2))$, then there is a single path $\pi(n_1, n_2)$ in t.

Accordingly, we define:

Definition 3.9. Let $\omega_1, \omega_2 \in \mathbb{N}^* $ be two words such that:
\[
 h(\pi(n_1)) = \omega_1, \quad h(\pi(n_2)) = \omega_1 \omega_2
\]
for some nodes n_1 and n_2 in t. Then we define:
\[
 \text{extract}(\omega_1) \equiv \overline{tc}(n_1), \quad \text{extract}(\omega_1, \omega_2) \equiv \overline{tc}(n_1, n_2)
\]
which gives us the tree path condition tails associated with the paths $\pi(n_1)$ and $\pi(n_2)$, respectively. (Note that Lemma 3.8 ensures that n_1 and n_2 are uniquely determined by ω_1 and ω_2.)

We use extract to define the sufficient requirements to obtain a formula pattern from a given regular pattern.

Lemma 3.10. Suppose that $\{(n_j, k_j)\}_{j=1}^n$ match the regular pattern $\omega_1, \omega_2, \omega_3$. Let $\varphi_1, \varphi_2(x), \varphi_3(x)$ be a formula pattern that satisfies:
\[
 \varphi_1 \equiv \text{extract}(\omega_1)
\]
\[
 \varphi_2[i/x] \equiv \text{extract}(\omega_1 \omega_2^{-1}, \omega_1 \omega_2^i) \quad (i = 1, \ldots, \max(k_j)_{j=1}^n)
\]
\[
 \varphi_3[k_j/x] \equiv \text{extract}(\omega_1, \omega_2^{-1}, \omega_1 \omega_2^{-k_j} / \omega_1 \omega_2) \quad (j = 1, \ldots, n)
\]
Then $\{(n_j, k_j)\}_{j=1}^n$ match $\varphi_1, \varphi_2(x), \varphi_3(x)$.

Based on Lemma 3.10, we reduce the problem of finding a formula pattern to two synthesis tasks, for φ_2 and φ_3. (Note that φ_1 is trivially obtained from the first requirement of the lemma.) Each synthesis task has the form:
\[
 \varphi[d_i/x] \equiv \psi, \quad (i = 1, \ldots, p)
\]
where $\varphi(x)$ is the formula to be synthesized (i.e., φ_2 or φ_3), (ii) p is the number of equations (which is either $\max(k_j)_{j=1}^n$ in the case of φ_2 or in the case of φ_3), (iii) $\{\psi[i]\}_{i=1}^p$ are formulas (obtained from the extracted path constraints), and (iv) $\{d_i\}_{i=1}^p$ are constant numerical terms (which are the i’s in the case of φ_2 or the k_j’s in the case of φ_3).

As synthesis is a hard problem in general, we focus on the case where all formulas in $\{\psi[i]\}_{i=1}^p$ are syntactically identical up to a constant numerical term, i.e., there exists a formula $\theta(y)$ such that $\theta[y_i/y] \equiv \psi$ for some numerical constants $\{y_i\}_{i=1}^p$. To obtain $\varphi(x)$ from $\theta(y)$, it remains to synthesize a term that will express each y_i using the corresponding d_i. Technically, if there exists a term $t(x)$ such that:
\[
 t[d_i/x] \equiv y_i \quad (i = 1, \ldots, p)
\]
then the desired formula $\varphi(x)$ will be given by $t(x)/y$. When looking for such $t(x)$, we restrict our attention to terms of the form $a \cdot x + b$ where a and b are constant numerical terms that must satisfy:
\[
 \{a \cdot d_i + b = y_i\}_{i=1}^p
\]
The existence of such a and b can be checked using an SMT solver.

Example 3. Consider again the regular pattern (W, GB, GY) which is matched by $(\{(n_5, 0), (n_9, 1), (n_{13}, 2)\})$. We look for a formula pattern $(\varphi_1, \varphi_2(x), \varphi_3(x))$ that satisfies:
\[
 \varphi_1 \equiv \text{extract}(W)
\]
\[
 \varphi_2[1/x] \equiv n > 0 \land s[0] = 97 \quad \text{extract}(W, GB)
\]
\[
 \varphi_3[0/x] \equiv n > 0 \land \neg s[0] = 97 \quad \text{extract}(W, GY)
\]
\[
 \varphi_3[2/x] \equiv n > 2 \land \neg s[2] = 97 \quad \text{extract}(W, GYGB, GYGBGY)
\]
Consider, for example, the formulas associated with φ_2. First, note that they are identical up to a constant numerical term, e.g., for $\theta(y) \equiv n > y \land s[y] = 97$:
\[
 \theta[0/y] \equiv n > 0 \land s[0] = 97 \quad \theta[1/y] \equiv n > 1 \land s[1] = 97
\]
Now we look for constant numerical terms a and b such that:
\[
 (0 = (a \cdot x + b)[1/x]) \land (1 = (a \cdot x + b)[2/x])
\]
which is satisfied by $a \equiv 1$ and $b \equiv -1$, therefore:
\[
 \varphi_2(x) \equiv \theta(x - 1)/y \equiv n > x - 1 \land s[x - 1] = 97
\]
We similarly synthesize $\varphi_3(x) \equiv n > x \land \neg s[x] = 97$.

If we succeeded to synthesize a formula pattern $(\varphi_1, \varphi_2(x), \varphi_3(x))$ matched by $\{(n_j, k_j)\}_{j=1}^n$, we attempt to synthesize the merged value of a variable v by synthesizing a term $t(x)$ that satisfies:
\[
 t[k_j/x] \equiv n_j \cdot s.mem(v) \quad (j = 1, \ldots, n)
\]
Such terms are synthesized similarly to formula patterns.

For each regular partition shown in Table 1, we automatically synthesize the formula pattern and the induced merged symbolic state using the technique above.

The proofs for Theorem 3.7 and the other lemmas are given in [53, Section A].

4 INCREMENTAL STATE MERGING

When symbolically analyzing code fragments that contain disjunctive conditions, the number of generated states, as well as the size of the generated execution trees, might be exponential. In such cases, the exploration of the code fragment might not terminate within the allocated time budget and the analysis might not even reach the point where state merging, and pattern-based state merging in particular, can be applied.

To address this issue, we propose an incremental approach for state merging, in which we merge leaves in the execution tree not only with other leaves but also with internal nodes during the construction of the tree. This allows to compress the tree as it is constructed. Once the construction of the tree is complete, we can apply our pattern-based state merging approach on the leaves. Technically, in addition to the active symbolic states, i.e., those that are stored in the current leaf nodes, we keep also the non-active symbolic states, i.e., those that are stored in the internal nodes. When a new leaf n_1 is added to the execution tree, we search for the highest node n_2, i.e., closest to the root, such that $n_1.s$ and $n_2.s$ are merge-compatible and have the same symbolic store w.r.t. live variables [11]. We additionally require that n_1 is unreachable from
5 SOLVING QUANTIFIED QUERIES

In general, the quantified queries generated by our approach (Section 3) can be solved using an SMT solver that supports quantified formulas, e.g., Z3 [24]. In practice, however, we observed that the generic method employed by Z3 to solve such queries often leads to subpar performance compared to the solving of the quantifier-free variant of the queries. Hence, we devise a solving procedure that leverages the particular structure of the generated quantified formulas, and resort to the generic method if our approach fails.

Our solving procedure assumes a closed formula \(\varphi \equiv \bigwedge_i \psi_i \) where each clause \(\psi_i \) is either a quantifier-free formula or a universal formula of the form \(\forall i \leq j \rightarrow \psi \) where \(\psi \) is a quantifier-free formula with a free variable \(i \). Our solving procedure works in four stages:

(1) \textbf{Quantifier stripping}. We weaken \(\varphi \) into a quantifier-free formula \(\varphi_{QF} \) by replacing quantified clauses with implied quantifier-free clauses. Technically, each quantified clause \(\forall i \leq j \rightarrow \psi \) in \(\varphi \) is replaced with the conjunction of the following two quantifier-free formulas:

\[
(1) \ k \geq 1 \rightarrow \psi(1/i) \quad (2) \ \bigwedge (\neg(1 \leq t \leq k) \rightarrow (\neg\psi(t/i)) \in \varphi)
\]

Intuitively, the former provides a quantifier-free clause which partially preserves the properties imposed by the quantified clause, and the latter reduces the chances that the SMT solver computes a model of \(\varphi_{QF} \) that does not satisfy \(\psi \): if \(1 \leq t \leq k \) then \(\forall i \leq j \rightarrow \psi \) demands that \(\psi(t/i) \) holds in any model of \(\varphi \). If the SMT solver fails to find a model for \(\varphi_{QF} \), then \(\varphi \) is also unsatisfiable. If a model was found, we check whether it is also a model of \(\varphi \).

EXAMPLE 5. Consider the following query, a simplification of a representative query from our experiments:

\[
\varphi \equiv (s[n] = 0) \land (1 \leq k \leq 10) \land (s[k - 1] = 8) \land (\forall i. 1 \leq i \leq k \rightarrow s[i - 1] \neq 0)
\]

Note that (a) the instantiation of the quantified formula using \(i = 1 \) results in \(k \geq 1 \rightarrow s[0] \neq 0 \), and (b) \(s[n] = 0 \) is obtained by substituting \(-s[i - 1] \neq 0 \) into \(s[n] = 0 \). Thus, the weakened query obtained by quantifier stripping is given by:

\[
\varphi_{QF} \equiv (s[n] = 0) \land (1 \leq k \leq 10) \land (s[k - 1] = 8) \land (k \geq 1 \rightarrow s[0] \neq 0) \land (1 \leq n + 1 \leq k)
\]

The following model, for example, is a model of \(\varphi_{QF} \):

\[
m \equiv \{ n \mapsto 7, k \mapsto 7, s \mapsto \{ 1, 0, 0, 0, 0, 8, 0 \} \}
\]

but, unfortunately, it is not a model of \(\varphi \).

(2) \textbf{Assignment Duplication}. If \(m \) is not a model of \(\varphi \), we modify \(m \) into a model \(m_2 \) which assigns to every array cell accessed by a quantified clause a value \(v \) of a cell in that array that was explicitly constrained by \(\varphi_{QF} \). Technically, for every array \(a \) accessed with an offset that depends on the quantified variable \(i \) we do the following:

(1) pick an accessed offset \(o \) of \(a \) such that \(o \) depends on \(i \);
(2) evaluate the value of \((a/o)[1/i] \) in \(m \), namely \(n \); and
(3) compute the concrete offsets obtained by evaluating \(a[j/i] \) in \(m \) for \(2 \leq j \leq

\cite{CVCS} and \cite{Yices} failed to solve most of our queries.

\cite{Yices} for the interested reader, a complete pseudo code of the solving procedure is given in [33, Section 8].

We write \(c \in \varphi \) to note that \(c \) is one of the clauses of \(\varphi \).
We implemented our state merging approach on top of the KLEE \cite{10.1145/2905205.2905213} symbolic execution engine, configured with LLVM 7.0.0 \cite{LLVM}. Our approach generates quantified queries over arrays and bit vectors, so we use Z3 \cite{de Moura & Björner} (version 4.8.17) as the underlying SMT solver. We extended KLEE’s expression language to support quantified formulas, and modified some parts of the solver chain accordingly. We implemented our solving procedure (Section 5) as an additional component in the solver chain. To implement the hash function used by the pattern-based state merging approach (Section 3), we relied on the expression hashing utility of KLEE and modified it by assigning a pre-defined hash value to all constants. To extract the regular patterns from the execution trees, we used a basic regular expression matching algorithm. If our hash function is not valid for a given generated execution tree (Definition 3.1), or the number of extracted regular patterns in that tree exceeds a user-specified threshold, then we fallback to standard state merging (Definition 2.1). Our implementation is available at \cite{10.1145/3371518.3371995}.

7 EVALUATION

Evaluating a state-merging approach requires determining the desired merging points, i.e., the code segments where state merging should be applied. In our case, this translates to identifying code segments that produce merging operations that involve many symbolic states. To do so, we evaluate our approach in the context of the symbolic-size memory model \cite{Liang:2014:EC:2654515.2688097}. This model supports bounded symbolic-size objects, i.e., objects whose size can have a range of values, limited by a user-specified capacity bound. It was observed in \cite{Liang:2014:EC:2654515.2688097} that loops operating on symbolic-size objects typically produce many symbolic states, and state-merging was suggested to combat the ensuing state explosion problem. Thus, this memory model provides a suitable basis for evaluating our state-merging approach. Furthermore, the automatic detection of merging points in \cite{Liang:2014:EC:2654515.2688097} avoids the need for manual annotations. We emphasize, however, that our technique is independent of the symbolic-size memory model itself (see Section 7.7). That said, the symbolic-size memory model does have the potential to produce more challenging merging operations than the concrete-size model as it considers a larger state space.

The following modes are the main subjects of comparison: The PAT mode is the pattern-based state merging approach described in Section 3 which partitions the symbolic states into merging groups based on regular patterns in the execution tree, and uses quantifiers to encode the merged path constraints. In the PAT mode, the incremental state merging approach (Section 4) and the solving procedure (Section 5) are enabled. The CFG mode is the state merging approach discussed above (SMOpt mode from \cite{Liang:2014:EC:2654515.2688097}), which partitions the symbolic states into merging groups according to their exit point from the loop in the CFG, and uses the standard QFABV encoding \cite{de Moura & Björner} (disjuncts and ite expressions). The BASE mode is the forking approach used in vanilla KLEE \cite{10.1145/2905205.2905213}.

The following research questions guide our evaluation:

\begin{enumerate}
\item \textbf{(RQ1)} Does PAT improve standard state merging (CFG)?
\item \textbf{(RQ2)} Does PAT improve standard symbolic execution (BASE)?
\item \textbf{(RQ3)} Do all components contribute to the performance of PAT?
\end{enumerate}

7.1 Benchmarks

The benchmarks used in our evaluation are listed in Table 2. These benchmarks were chosen as they are challenging for symbolic execution and provide numerous opportunities for applying state merging. In each benchmark, we analyzed a set of subjects (APIs and whole programs) whose inputs (parameters, command-line

\footnote{This is in contrast to the standard concrete-size model where every object has a concrete size.}
arguments, etc.) can be modeled using symbolic-size objects, i.e., arrays and strings. In libosip [7], libtasn1 [6], and libpng [10], the test drivers for the APIs were taken from [52]. In wget [8], a library for retrieving files using widely used internet protocols (HTTP, etc.), we reused the test drivers from the existing fuzzing test suite whenever possible, and for other APIs, we constructed the test drivers manually. In apr [12] (Apache Portable Runtime), a library that provides a platform-independent abstraction of operating system functionalities, we constructed test drivers for APIs from several modules (strings, file_io and tables) which manipulate strings, file-system paths, and data structures. In json-c [9], a library for decoding and encoding JSON objects, we constructed test drivers for APIs that manipulate string objects. In busybox [4], a software suite that provides a collection of Unix utilities, we focused on utilities whose input comes from command-line arguments and files, which can be symbolically modeled using KLEE’s posix runtime. We did not analyze utilities whose behavior depends on the state of system resources (process information, permissions, file-system directories, etc.), since KLEE has no symbolic modeling for those. To prevent the symbolic executor from getting stuck in getopt(), the routine used in busybox to parse command line arguments, we added the restriction that symbolic command line arguments do not begin with a ‘-’ character.

7.2 Setup

We run every mode under the symbolic-size memory model [52] with the following configuration: a DFS search heuristic, a one-hour time limit, and a 4GB memory limit. The capacity settings in each of the benchmarks are shown in Table 2.

In every experiment, we use the following metrics to compare between the modes: analysis time and line coverage computed with GCov [5]. When the compared modes have the same exploration order, we additionally use the path coverage metric, i.e., the number of explored paths.

Each benchmark consists of multiple subjects, so when comparing the two modes, we measure the relative speedup and the relative increase in coverage for each subject. Note that when we measure the average (and median) speedup, for example, the speedup in the subjects where both modes timed out is always 1×. Similarly, when we measure coverage, the coverage in the subjects where both modes terminated, i.e., completed the analysis before hitting the timeout, is always identical. To separate the subjects where the results are trivially identical, we report the average (and median) over a subset of the subjects depending on the evaluated metric: When measuring analysis time, we consider the subset of the subjects where at least one of the modes terminated. When measuring coverage, we consider the subset of the subjects where at least one of the modes timed out. In [53, Section C.1.1], we additionally report the average (and median) when computed over all the subjects.

We ran our experiments on several machines (Intel i7-6700 @ 3.40GHz with 32GB RAM) with Ubuntu 20.04.

7.3 Results: PAT vs. CFG

In this experiment, we compare between the performance of the state merging modes: PAT and CFG. The results are shown in Table 3 and Figure 4.

Analysis Time. Column Speedup in Table 3 shows the (average, median, minimum, and maximum) speedup of PAT compared to CFG in the subjects where at least one of the modes terminated. Column # shows the number of considered subjects out of the total number of subjects. In libosip, wget, apr, json-c, and busybox, PAT was significantly faster in many subjects, and in libtasn1 and libpng, the analysis times were roughly identical. Figure 4a breaks down the speedup of PAT compared to CFG per subject. Overall, there were 12 subjects where PAT was slower than CFG. In libosip, PAT was slower only in one API. In this case, the slowdown of 0.03x (from 20 to 554 seconds) was caused by a small number of queries (9) that our solving procedure (Section 5) failed to solve, and whose solving using the SMT solver required most of the analysis time. In wget, PAT was slower in two APIs. In one case, the slowdown was caused by the computational overhead of the incremental state merging approach. In the other case, the slowdown was caused by a relatively high number of queries that our solving procedure failed to solve. In libtasn1, PAT was slower in seven APIs, but the time difference in these cases was rather minor (roughly 10 seconds). In libpng, PAT was slightly slower in one API due to the computational overhead of extracting regular patterns. In busybox, PAT was slower in one utility with a minor time difference of two seconds. Column Diff in Table 3 shows the difference between PAT and CFG in terms of the total time required to analyze all the subjects. Note that the time difference is interpreted as zero in subjects where both modes are timed out. In libosip, wget, apr, and busybox, PAT achieved a considerable reduction of roughly 8, 4, 1, and 3 hours, respectively. In json-c, PAT achieved a reduction of roughly 20 minutes, and in libtasn1 and libpng, the time difference was minor. Figure 4b breaks down the time difference between PAT and CFG per subject.

Coverage. Column Coverage in Table 3 shows the (average, median, minimum, and maximum) relative increase in line coverage of PAT over CFG in the subjects where at least one of the modes timed out. Again, column # shows the number of considered subjects. In libosip and wget, PAT achieved higher coverage in many cases. In libtasn1, PAT resorted to standard state merging in most cases, as it did not find regular (and formula) patterns. Therefore, the results were similar to those of CFG, and coverage was not improved. In libpng, the coverage was roughly identical in all the APIs except for two APIs where PAT achieved an improvement of 8.69% and 18.33%. In apr, the coverage was identical in all the APIs except for two cases where PAT had an increase of 16.62% and a decrease of 2.12%.

2We noticed that some of the APIs from libosip that were used in [52] are similar, i.e., different APIs with the same internal functionality. The analysis of such APIs leads to the same results, therefore, we excluded them from the evaluation to avoid redundancy.

3In libosip, libtasn1, and libpng, the capacity settings were set similarly to the experiments from [52].

Table 2: Benchmarks.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Version</th>
<th>SLOC</th>
<th>#Subjects</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>libosip</td>
<td>2.2.3</td>
<td>19,783</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td>wget</td>
<td>1.21.2</td>
<td>199,385</td>
<td>21</td>
<td>400</td>
</tr>
<tr>
<td>libtasn1</td>
<td>4.16.0</td>
<td>15,291</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>libpng</td>
<td>1.6.37</td>
<td>56,936</td>
<td>12</td>
<td>200</td>
</tr>
<tr>
<td>apr</td>
<td>1.6.3</td>
<td>60,034</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>json-c</td>
<td>0.15</td>
<td>8,167</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>busybox</td>
<td>1.36.0</td>
<td>198,300</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>
In json-c, there was only one API where one of the modes timed out, and in this case, CFG achieved higher coverage. In busybox, there were 23 cases where at least one of the modes timed out. In four cases, PAT achieved an improvement of 3.98%-15.45%, and in two cases, CFG achieved an improvement of 1.15% and 61.78%. In the remaining 17 cases, the coverage was identical. (In most of these cases, PAT did not find formula patterns, resulting in identical explorations.) Column Diff. in Table 3 shows the difference between PAT and CFG in terms of the total number of covered lines across all the subjects. Again, note that there is no difference in coverage in subjects where both modes terminated. It is possible to have an improvement in average coverage but not in total line difference (apr) and vice versa (busybox). This happens due to shared code that is covered by only one mode in one subject but covered by the other mode in other subjects. Figure 4c breaks down the coverage improvement of PAT over CFG per subject.

Scaling. The main obstacle in applying state merging originates from the introduction of disjunctive constraints and ite expressions, especially when the number of states to be merged is high. We evaluate the ability of our approach to cope with a particular aspect of this challenge where the states are generated by loops iterating over large data objects, a frequent situation in our experience. Technically, we conducted a case study on libosip, one of our benchmarks, where we gradually increase the capacity of symbolic-size objects. When the capacity is increased, the size of the symbolic-size objects is potentially increased as well. This typically leads to additional forks, for example, in loops that operate on symbolic-size objects. As we apply state merging in such loops, this eventually results in more complex merging operations. Thus, increasing the capacity allows us to measure how each mode scales w.r.t. the number of merged states. In this experiment, we run each API in each of the state merging modes (PAT and CFG) under several different capacity settings. The results are shown in Table 4.

As can be seen, PAT achieved better results than CFG in all the capacity settings. In general, when the capacity is increased, there are typically more forks and queries, which makes the analysis of size-dependent loops harder for both modes. Therefore, the coverage improvement was less significant under the highest capacity settings (100 and 200) compared to the lower capacity settings. Note also that under those capacity settings, there were only five APIs in which at least one of the modes terminated. We observed that in these APIs, the analysis time increased in both modes when the capacity was increased. However, with CFG, the analysis time increased more significantly, so the speedup under the highest capacity setting (200) was greater. This indicates that our approach is less sensitive to the input capacity and hence to the resulting number of merged states.

RQ1 Answer: PAT outperforms CFG in many cases and scales better in executing complex state merging operations.

7.4 Results: PAT vs. BASE

In this experiment, we compare the performance of PAT and BASE, i.e., standard symbolic execution that uses the forking approach. The results are shown in Table 5.

Column Speedup shows the (average and median) speedup of PAT compared to BASE in the subjects where at least one of the modes terminated. As can be seen, PAT achieved a considerable speedup in the majority of the benchmarks. Overall, there were nine subjects in which PAT was slower than BASE. In three of these cases, the time difference was minor (roughly 5 seconds). In the other cases, the slowdown was caused by the computational overhead of the incremental state merging approach and the complex constraints that were introduced during the state merging. Regarding timeouts, there were 20 subjects in which BASE timed out and PAT terminated, and only one subject in which PAT timed out and BASE terminated.

Column Coverage shows the (average and median) relative increase in line coverage of PAT over BASE in the subjects where at least one of the modes timed out. PAT achieved higher coverage in many subjects, especially in libosip and libpng. In most of the cases in libtasn1, apr, and json-c, both modes covered most of the reachable lines in a relatively early stage, so the coverage was similar. In wget and busybox, PAT achieved higher coverage in some of the cases, but there were also cases in which BASE achieved higher coverage. In general, this is a consequence of the known tradeoff between forking and state merging: The forking approach explores more paths but generates less complex constraints.

In addition, we observed that there were four subjects in which BASE ran out of memory. In two of these cases, BASE finished the analysis before PAT, but its analysis was incomplete since KLEE prunes the search space once the memory limit is reached.

For space reasons, the breakdown of the improvement of PAT over BASE per subject is shown in [53, Section C.1.2].

RQ2 Answer: PAT outperforms BASE in many cases, however, the known tradeoff between state merging and forking remains.

7.5 Results: Component Breakdown

Now, we evaluate the significance of the components used in our pattern-based state merging approach (i.e., PAT).

7.5.1 Solving Procedure. To evaluate our solving procedure (Section 5), we ran each subject in two versions of PAT: one that relies only on the SMT solver (vanilla Z3) and another one that uses our solving procedure. Both modes are run with the incremental state merging approach enabled.

To evaluate the impact of the solving procedure, we show in Table 6 its effect on analysis time and coverage in the relevant subsets. Here, the two modes have the same exploration order, so we use the path coverage metric as well. In libosip, wget, apr, json-c, and busybox, our solving procedure generally leads to lower analysis times and higher (line or path) coverage. The results were mostly similar in libtasn1 and libpng since the number of quantified variables was relatively low. The only exception was one of the APIs in libpng, where the path coverage was increased by 39.51%.

7.5.2 Incremental State Merging. To evaluate the incremental state merging approach (Section 4), we run each subject in two versions of PAT: one that disables incremental state merging and another one that enables it. The results are shown in Table 7.

In libosip, there were relatively many loops where incremental state merging was successfully applied, i.e., reduced the number of explored paths. This resulted in a significant speedup and higher line coverage. In wget, there were four APIs where incremental state merging could be applied, and in two of these cases, the coverage
Table 3: Comparison of PAT vs. CFG.

<table>
<thead>
<tr>
<th></th>
<th>Speedup (×)</th>
<th>Coverage (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>libosip</td>
<td>16/35</td>
<td>7.18</td>
<td>5.50</td>
<td>0.03</td>
</tr>
<tr>
<td>wget</td>
<td>11/31</td>
<td>2.69</td>
<td>1.67</td>
<td>0.54</td>
</tr>
<tr>
<td>libtasn1</td>
<td>7/13</td>
<td>0.94</td>
<td>0.95</td>
<td>0.90</td>
</tr>
<tr>
<td>libpng</td>
<td>1/12</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>apr</td>
<td>10/20</td>
<td>3.50</td>
<td>1.63</td>
<td>1.00</td>
</tr>
<tr>
<td>json-c</td>
<td>1/5</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>busybox</td>
<td>8/30</td>
<td>1.68</td>
<td>1.07</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Table 3: Comparison of PAT vs. CFG.

(a) Speedup in analysis time (×) in the subjects where at least one of the modes terminated (in log-scale).

(b) Difference in analysis time (seconds) in the subjects where at least one of the modes terminated.

(c) Relative increase in coverage (%) in the subjects where at least one of the modes timed out.

Figure 4: Breakdown of the improvement of PAT over CFG per subject.

Table 4: Comparison of PAT vs. CFG under different capacity settings (column Capacity) in libosip.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Speedup (×)</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>16/35</td>
<td>7.18</td>
</tr>
<tr>
<td>20</td>
<td>13/35</td>
<td>4.58</td>
</tr>
<tr>
<td>50</td>
<td>12/35</td>
<td>1.99</td>
</tr>
<tr>
<td>100</td>
<td>5/35</td>
<td>2.99</td>
</tr>
<tr>
<td>200</td>
<td>5/35</td>
<td>4.81</td>
</tr>
</tbody>
</table>

Table 5: Comparison of PAT vs. BASE.

<table>
<thead>
<tr>
<th></th>
<th>Speedup (×)</th>
<th>Coverage (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>libosip</td>
<td>17/35</td>
<td>11.21</td>
<td>3.10</td>
<td>28/35</td>
</tr>
<tr>
<td>wget</td>
<td>12/34</td>
<td>2.75</td>
<td>3.12</td>
<td>24/34</td>
</tr>
<tr>
<td>libtasn1</td>
<td>7/13</td>
<td>4.94</td>
<td>9.30</td>
<td>7/13</td>
</tr>
<tr>
<td>libpng</td>
<td>1/12</td>
<td>2.46</td>
<td>2.46</td>
<td>11/12</td>
</tr>
<tr>
<td>apr</td>
<td>10/20</td>
<td>8.40</td>
<td>3.91</td>
<td>14/20</td>
</tr>
<tr>
<td>json-c</td>
<td>4/5</td>
<td>1.36</td>
<td>3.09</td>
<td>2/5</td>
</tr>
<tr>
<td>busybox</td>
<td>9/30</td>
<td>2.43</td>
<td>2.51</td>
<td>22/30</td>
</tr>
</tbody>
</table>

Table 6: Impact of solving procedure.

<table>
<thead>
<tr>
<th></th>
<th>Speedup (×)</th>
<th>Coverage (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>libosip</td>
<td>16/35</td>
<td>6.78</td>
<td>2.80</td>
<td>28/35</td>
</tr>
<tr>
<td>wget</td>
<td>11/31</td>
<td>4.28</td>
<td>3.82</td>
<td>27/31</td>
</tr>
<tr>
<td>libtasn1</td>
<td>7/13</td>
<td>0.99</td>
<td>0.99</td>
<td>6/13</td>
</tr>
<tr>
<td>libpng</td>
<td>1/12</td>
<td>0.96</td>
<td>0.96</td>
<td>17/12</td>
</tr>
<tr>
<td>apr</td>
<td>11/20</td>
<td>1.60</td>
<td>1.00</td>
<td>11/20</td>
</tr>
<tr>
<td>json-c</td>
<td>4/5</td>
<td>1.01</td>
<td>1.01</td>
<td>1/5</td>
</tr>
<tr>
<td>busybox</td>
<td>8/30</td>
<td>0.98</td>
<td>1.00</td>
<td>20/30</td>
</tr>
</tbody>
</table>

Table 7: Impact of incremental state merging.

<table>
<thead>
<tr>
<th></th>
<th>Speedup (×)</th>
<th>Coverage (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>libosip</td>
<td>16/35</td>
<td>6.78</td>
<td>2.80</td>
<td>28/35</td>
</tr>
<tr>
<td>wget</td>
<td>11/31</td>
<td>0.99</td>
<td>0.99</td>
<td>20/31</td>
</tr>
<tr>
<td>libtasn1</td>
<td>7/13</td>
<td>0.96</td>
<td>0.96</td>
<td>6/13</td>
</tr>
<tr>
<td>libpng</td>
<td>1/12</td>
<td>0.96</td>
<td>0.96</td>
<td>17/12</td>
</tr>
<tr>
<td>apr</td>
<td>11/20</td>
<td>1.60</td>
<td>1.00</td>
<td>11/20</td>
</tr>
<tr>
<td>json-c</td>
<td>4/5</td>
<td>1.01</td>
<td>1.01</td>
<td>1/5</td>
</tr>
<tr>
<td>busybox</td>
<td>8/30</td>
<td>0.98</td>
<td>1.00</td>
<td>20/30</td>
</tr>
</tbody>
</table>

RQ3 Answer: All the components contribute.

7.6 Found Bugs

We found two bugs during our experiments with busybox. In both cases, a null-pointer dereference occurred in the implementation of realpath in klee-uclibc, KLEE’s modified version of uClibc [54]. We reported the bugs, which were confirmed and fixed by the official maintainers [2]. We note that these bugs were detected by PAT and BASE, but were not found by CFG due to a timeout.

1149
7.7 Threats to Validity

First, our implementation may have bugs. To validate its correctness, we performed a separate experiment where each subject was run in the PAT mode with a timeout of one hour. During these runs, we validated that every executed state merging operation is correct w.r.t. Theorem 3.7. In addition, for every query that our solving procedure was able to solve, we validated the consistency of the reported result w.r.t. the underlying SMT solver.

Second, our choice of benchmarks might not be representative enough. That said, we chose a diverse set of real-world benchmarks used in prior work [35, 47, 52]. In addition, we used benchmarks that process inputs of both binary and textual formats.

Third, we evaluated our approach in the context of the symbolic-size model [52]. To address the threat that our approach may be beneficial only in the context of that particular memory model, we performed an additional experiment using the standard concrete-size memory model. In this experiment, we set the concrete sizes of the input objects according to the capacity configuration in Table 2, and apply state merging in loops whose conditions depend on these sizes, as we do in our original experiments. The results, shown in [53, Section C.3], lead to conclusions similar to the ones drawn from the original experiments.

Fourth, the search heuristic might affect the coverage when the exploration does not terminate. To address the threat that our results may be valid only for the DFS search heuristic, we performed an additional experiment using the default search heuristic in KLEE. The results, shown in [53, Section C.4], are comparable.

7.8 Discussion

Taking a high-level view of the experiments, we observe that our approach brings significant gains w.r.t. both baselines in most of the benchmarks (libosip, wget, apr, json-c, and busybox). This is because these benchmarks contain an abundant number of size-dependent loops that generate expressions that are linearly dependent on the number of repetitive parts in the path constraints, which leads to the detection of many regular (and formula) patterns. In libtasn1 and libpng, however, most of the size-dependent loops generate expressions that cannot be synthesized with our approach, for example, aggregate values such as the sum of array contents. As a result, relatively few formula patterns are detected. Nevertheless, in these cases, our approach still preserves the benefits of standard state merging w.r.t. standard symbolic execution.

8 RELATED WORK

Compact symbolic execution [50] uses quantifiers to encode the path conditions of cyclic paths that follow the same control flow path in each iteration and update all the variables in a regular manner. This allows them to encode the effect of unbounded repetitions of some of the cyclic paths in the program. In contrast, we seek regularity at the level of the constraints and, therefore, do not rely on uniformity in the control flow graph. In memspn (Section 1), for example, they can only summarize the paths in which either all the characters of s are matched with the first character of char’s (the then branch) or the first character of s is unmatched (the else branch). In contrast, our approach can summarize all paths up to a given bound using two merged states. Furthermore, [50] solves quantified queries using a standard solver as opposed to our specialized solving procedure.

Godefroid et al. [32] propose a dynamic approach for inferring invariants in input-dependent loops, which allows them to partially summarize the loop’s effect on induction variables. Loop-extended symbolic execution [46] summarizes input-dependent loops. It uses static analysis to infer linear relations between variables and trip count variables tracking the number of iterations in the loop. In contrast, our approach does not rely on induction variables or the number of loop iterations. Kapus et al. [35] summarize string loops by synthesize calls to standard string functions. S-Looper [55] introduces string constraints that can be solved by solvers that support the string theory. Our approach is not restricted to string loops and does not require a solver supporting string theory.

Veritesting [13] improves the performance of symbolic execution by merging similar execution paths. Given a symbolic branch, veritesting summarizes side effects from both branch sides to avoid path explosion. Java Ranger [49] extends veritesting of Java programs to support dynamically dispatched methods, by using the runtime information available during the analysis. MultiSE [48] summarizes updates to values by efficiently guarding each value with a path predicate. Kuznetsov et al. [37] merge symbolic states based on a query count heuristic that estimates if the merging would reduce the solving time in the future. Trabish et al. [52] perform state merging in loops that depend on objects whose size is symbolic. They reduce the size of the encoding in the resulting merged states using the execution tree, but still rely on disjunctions and ite expressions, therefore unable to achieve the reduction obtained with our approach. We explicitly compared our technique with theirs (referred to as CFG in Section 7) and show that our approach performs better in many cases. The works mentioned above do not address the encoding explosion problem caused by using disjunctions and ite expressions.

There are many works on handling quantified formulas [14, 16, 23, 27, 30, 43–45]. Our solving procedure (Section 5) mainly targets satisfiable queries, and adapts ideas from E-matching [23] and model-based quantifier instantiation [30] to our specific needs.

9 CONCLUSIONS AND FUTURE WORK

We propose a state merging approach that significantly reduces the encoding complexity of merged symbolic states and show through our evaluation that this is a promising direction toward scaling state merging in symbolic execution.

Our approach automatically detects regular patterns to partition similar symbolic states into merging groups. For each group, we synthesize a formula pattern that enables an efficient encoding of the merged symbolic state using quantifiers. Extracting more complex patterns, e.g., beyond linear formulas, can further improve the applicability of our approach.

Acknowledgements. This research was partially funded by the Israel Science Foundation (ISF) grants No. 1996/18 and No. 1810/18 and by Len Blavatnik and the Blavatnik Family foundation.

10 DATA AVAILABILITY

Our replication package is available at [3]. It contains a Docker image with all the resources needed to run the experiments.
REFERENCES

Received 2023-02-02; accepted 2023-07-27