
Address-Aware Query Caching
for Symbolic Execution

David Trabish
Tel-Aviv University

Tel-Aviv, Israel
davivtra@post.tau.ac.il

Shachar Itzhaky
Technion

Haifa, Israel
shachari@cs.technion.ac.il

Noam Rinetzky
Tel-Aviv University

Tel-Aviv, Israel
maon@cs.tau.ac.il

Abstract—Symbolic execution (SE) is a popular program anal-
ysis technique. SE heavily relies on satisfiability queries during
path exploration, often resulting in the majority of the time being
spent on solving these queries. Hence, it is not surprising that one
of the most vital optimizations SE engines use is query caching. To
increase the cache hit rate, queries are transformed into a normal
form, which is used as a key for updating the cache. An obstacle
to caching queries involving pointers is the presence of numerical
address values, which are assigned by the engine according to its
memory allocation scheme and are hard to canonicalize across
different paths.

In this paper, we propose a novel query caching technique
that allows efficient handling of queries containing expressions
that depend on address values. The key insight is that the
result of such queries is in fact agnostic to the concrete address
values occurring in them, subject to some basic memory safety
constraints. This observation can be used to coalesce more queries
during cache lookup, thus further increasing cache utilization.

Our extensive evaluation shows that our technique achieves
significant performance gains when the analysis encounters
queries containing symbolic pointers, while incurring only a
modest performance overhead in other cases.

Index Terms—Symbolic execution, Query caching

I. INTRODUCTION

Symbolic execution (SE) is a popular program analysis
technique, that lies at the core of many applications including
automatic test generation [16], [17], [39], bug finding [16], [26],
debugging [29], patch testing [42], [33], automatic program
repair [36], [34], and quantitative program analysis [22], [15].
During symbolic execution, the program is run with a symbolic
input that is not constrained to any particular value, rather than
with a concrete one. Whenever the symbolic executor reaches
a branching point that depends on a symbolic value, an SMT
solver [19] is used to determine the feasibility of each branch,
and the appropriate paths are further explored while updating
their paths constraints with corresponding constraints. Once
the execution of a given path is completed, the SMT solver
can be used to generate a solution for the corresponding path
constraints, which represents a test case that can be used to
replay that path.

Often, symbolic execution spends most of its time on
solving queries [37], therefore the effectiveness of the symbolic
execution engine depends on the effectiveness of its underlying
SMT solver. To reduce the cost of constraint solving, symbolic
execution engines perform their own optimizations before

invoking the SMT solver. Among these optimizations are,
for example: caching [16], [44], [47], slicing [16], [44], [47],
expression rewriting [16], [40], and logical implications [28].

Symbolic executors perform a large number of queries,
therefore one of the most vital optimizations is query caching.
In this optimization, queries are transformed to a normal form,
which is used as a key for maintaining the cache. Different
tools adopt different normalization strategies [16], [44], [47], in-
cluding: canonization, renaming variables, rewriting equalities,
and arithmetic simplifications.

Unfortunately, there are still some types of queries that
are inefficiently handled by existing query caching solutions.
One type of such queries are the so-called address-dependent
queries, i.e., queries that involve pointer expressions, which
are generated in various symbolic execution tools such as
KLEE [16], ANGR [44], Manticore [35], and SAGE [23].
To illustrate when such queries are encountered, consider the
program in Figure 1. When the value of array[i][j] is
read at line 17, the corresponding expression depends on
the content of array, as it is accessed with the symbolic
offset i. The contents of array’s cells are the address values
assigned at line 11, therefore the query generated for the
branch at line 17 is address-dependent. Due to the branch at
line 5, the same flow described above is executed again while
exploring a different execution path. Depending on the utilized
allocation scheme, the addresses assigned at line 11 by the
other symbolic state may be different from those assigned by
the previously discussed symbolic state. Therefore, the queries
generated at line 17 by these two symbolic states would be
syntactically different, although they are clearly equisatisfiable.
Since existing query caching techniques rely on some form of
syntactic normalization, an opportunity to reuse the result of
the first query for the second one would be missed. Notice that
even if each symbolic state had its own local memory allocator,
synchronizing the assigned addresses would be difficult: For
example, if additional objects are allocated at line 6, then
the two states forked at line 5 are likely to produce different
allocation sequences.

In this paper, we introduce a novel query caching technique
for symbolic execution, that can efficiently handle address-
dependent queries. Such queries are prevalent in programs
that dereference symbolic pointers, i.e., pointers whose values
depend on the symbolic input. A prolific source for such

1 #define N (2)
2 #define MAGIC (7)
3
4 int z; // symbolic
5 if (z > 0) {
6 /* allocate objects... */
7 }
8
9 char **array = calloc(N, sizeof(char *));

10 for (unsigned int i = 0; i < N; i++) {
11 array[i] = calloc(N, 1);
12 }
13 array[0][1] = MAGIC;
14
15 unsigned int i; // symbolic, i < N
16 unsigned int j; // symbolic, j < N
17 if (array[i][j] == MAGIC) {
18 /* do something... */
19 }

Fig. 1: Motivating example.

programs are programs where the symbolic input propagates
into a data structure indexed by that input, as happens for
example with hash tables.

At a high level, we utilize the symbolic addressing model
introduced in [45] to modify the representation of the ex-
pressions generated by the symbolic execution engine, such
that the concrete address values returned by the allocator
are replaced with symbolic values. This allows to track the
propagation of these address values to the symbolic states and
the subsequent queries, and distinguish pointer expressions from
non-address integer expressions. Using this model, we are able
to detect address-dependent queries which are not syntactically
equivalent but are nonetheless equisatisfiable, thus improving
the cache utilization.

Our main contributions can be summarized as follows:
1) We propose a novel query caching technique, that allows

efficient handling of address-dependent queries.
2) We give a formal proof for the correctness guarantees of

our technique.
3) We provide a KLEE-based implementation, which we

make available as open-source.1

4) We provide in our evaluation an additional empirical
validation, and show that our technique can achieve
significant performance gains.

II. PRELIMINARIES

To understand why efficiently caching address-dependent
constraints is challenging, we first give some background about
the existing addressing model and the existing approach for
query caching in modern analysis tools [17], [16], [44], [47],
[15].

A. Addressing Model
In modern symbolic executors, e.g., KLEE and Manticore,

the address space is represented using a set of memory objects:

(b, s, a) ∈ N+ ×N+ ×A

1https://github.com/davidtr1037/klee-aaqc

When a logical object in the program is allocated, it is
associated with a memory object (b, s, a) that has a concrete
base address b ∈ N+ and spans s ∈ N+ bytes. In addition,
a memory object is backed by an SMT array a ∈ A with the
same size s , which tracks the values stored into the memory
object.2 If a value v is written to the eth byte of the object,
the array a is replaced by a new array expressed using a write
(also known as store) expression: wr(a, e, v). If the eth byte
of the object is accessed, the read value is expressed using a
read (also known as select) expression: rd(a, e).3

The allocated objects span distinct address ranges, i.e., for
every two distinct memory objects (b1, s1, a1) and (b2, s2, a2)
it holds that:

[b1, b1 + s1) ∩ [b2, b2 + s2) = ∅.

This non-overlapping requirement reflects the fact that different
objects are located at different parts of the memory, and enables
identifying memory objects by addresses: A concrete address
can belong to at most one object. Thus, when the program
accesses that memory location, the SE engine can determine
which SMT array represents the content at that address and
act accordingly. To detect buffer-overflow errors, the engine
allocates after each memory object in the address space a so-
called red zone: An unmapped memory region residing between
each two consecutive memory objects.

B. Query Caching

Symbolic executors [17], [16], [44] and other analysis
frameworks [47], [15] use some form of syntactic query
caching, to improve the performance of constraint solving. Each
query is transformed to an equivalent normal form according to
some syntactic rules, and this normal form is used as a key for
maintaining the cache: In case of a miss, the query is solved
using the SMT solver and its result is memoized. Otherwise, the
result of a previously solved query is reused without invoking
the SMT solver. The normalization is typically achieved via
variable renaming, canonization, arithmetic simplification, and
equality rewriting.

For instance, consider the following two queries:

x < 1 ∧ x+ y + 4 < 7 x+ z + 1 < 4 ∧ x < 1

These queries are syntactically different, but they can be
reduced to the same normal form:

v0 < 1 ∧ v0 + v1 < 3

Therefore, if one of these queries was already solved, the
result of the other one could be reused later if needed. This
query caching mechanism is effective in practice, but does not
provide a complete method for determining if two formulas
are equisatisfiable: There are queries that are equisatisfiable,
but which cannot be reduced to the same normal form.

TABLE I: The queries generated at line 17 in different states with the two addressing models.

Model State Symbolic Pointer Query AC
Existing s3 p1 := rd(wr(wr(a1, 0, 200), 1, 300), i) + j q1 : i < 2 ∧ j < 2 ∧ 200 ≤ p1 < 202 ∧ rd(a2, p1 − 200) = 7 -

s4 q2 : i < 2 ∧ j < 2 ∧ 300 ≤ p1 < 302 ∧ rd(a3, p1 − 300) = 7 -
s5 p2 := rd(wr(wr(a1, 0, 500), 1, 600), i) + j q3 : i < 2 ∧ j < 2 ∧ 500 ≤ p2 < 502 ∧ rd(a5, p2 − 500) = 7 -
s6 q4 : i < 2 ∧ j < 2 ∧ 600 ≤ p2 < 602 ∧ rd(a6, p2 − 600) = 7 -

Symbolic s3 p3 := rd(wr(wr(a4, 0, β2), 1, β3), i) + j q5 : i < 2 ∧ j < 2 ∧ β2 ≤ p3 < β2 + 2 ∧ rd(a2, p3 − β2) = 7 β2 = 200

s4 q6 : i < 2 ∧ j < 2 ∧ β3 ≤ p3 < β3 + 2 ∧ rd(a3, p3 − β3) = 7 β3 = 300

s5 p4 := rd(wr(wr(a4, 0, β5), 1, β6), i) + j q7 : i < 2 ∧ j < 2 ∧ β5 ≤ p4 < β5 + 2 ∧ rd(a5, p4 − β5) = 7 β5 = 500

s6 q8 : i < 2 ∧ j < 2 ∧ β6 ≤ p4 < β6 + 2 ∧ rd(a6, p4 − β6) = 7 β6 = 600

𝑆0

𝑆4

𝑆1

𝑆3

𝑧 ≤ 0𝑧 > 0

if (z > 0)

if (array[i][j] == 7)

𝑚𝑜2 𝑚𝑜3

𝑆6

𝑆2

𝑆5

𝑚𝑜5 𝑚𝑜6

resolve array[i][j]

Fig. 2: The execution tree of the program from Figure 1.

III. ADDRESS-AWARE QUERY CACHING

Our technique enables a more efficient caching of address
dependent queries, i.e., queries that contain pointer expressions.
We achieve that by using a symbolic addressing model that
modifies the representation of expressions in the symbolic
state, in a way that enables distinguishing pointer expressions
from integer expressions. We describe the symbolic addressing
model in Section III-A, and then show how this model helps
efficiently handle address dependent queries.

A. Symbolic Addressing Model

We adopt the addressing model proposed by [45] that was
used in the original work in order to dynamically merge and
split the underlying representations of memory objects. Here we
exploit its ability to modify the representation of the expressions
(and queries) generated by the symbolic execution engine,
without merging or splitting memory object representations.

In this model, as before, the program’s address space is
represented using a set of memory objects:

(β, s, a) ∈ E ×N+ ×A

However, here the base address of an object is a symbolic value
β ∈ E instead of a concrete one, while different objects use
distinct symbolic values (i.e., names) as their base addresses.

2SMT arrays are in fact unbounded, but the SE engine records the allocated
size and never accesses elements beyond it.

3 SE engines use an optimized representation of the memory object when the
object is always accessed using concrete (non-symbolic) offsets. For simplicity,
we avoid describing this optimization.

There is still an underlying assumption that memory objects are
non-overlapping, only that now, with symbolic base addresses,
it is not as straightforward to uphold this property.

We preserve this property using address-constraints (AC),
that maintain the correlation between symbolic addresses and
concrete ones. When a memory object is allocated, we add an
address constraint, i.e., an equality of the form β = b, where
β is the symbolic address and b is a concrete address that is
allocated in a non-overlapping manner (as in Section II-A).
Note that the concrete address b remains hidden while β is the
one that propagates to the symbolic state. To keep constraint
solving efficient, we substitute the address constraints before
sending a query to the solver, i.e., replace symbolic addresses
with their corresponding concrete values.

To illustrate how this addressing model works, consider
the program from Figure 1. Given 8-byte pointers, assume
that the allocated object at line 9 is (β1, 16, a1), and that the
allocated objects at line 11 are (β2, 2, a2) and (β3, 2, a3). If
the underlying concrete addresses are 100, 200, and 300, then
the address constraints at line 13 are:

{β1 = 100, β2 = 200, β3 = 300}

Note that the value of the variable array is β1, and the
values of its cells are β2 and β3. At line 17, where array is
accessed with symbolic offset i, the value of array[i] is a
read expression:

rd(wr(wr(a1, 0, β2), 1, β3), i)

This symbolic pointer expression has to be resolved using
the solver, but instead of passing the above expression we
substitute the address constraints, and the actual expression
passed to the solver would be:

rd(wr(wr(a1, 0, 200), 1, 300), i)

B. Caching Address Dependent Queries

To illustrate the need for the symbolic addressing model
described in Section III-A, consider again the program in
Figure 1 whose execution tree is shown in Figure 2. The
analysis starts with the initial state s0, which executes the
symbolic branch at line 5 and forks the execution. Then each
of the forked states, s1 and s2, allocates a two-dimensional
matrix using an array of pointers (line 9), and initializes one
of the cells to some constant value MAGIC (line 13). Say the
memory objects allocated in state s1 at lines 9 and 11 are:

mo1 = (100, 16, a1),mo2 = (200, 2, a2),mo3 = (300, 2, a3)

At line 17, where the value of array[i][j] is read in s1,
the value of the accessed pointer is:

p1 := rd(wr(wr(a1, 0, 200), 1, 300), i) + j

which is also shown under the column Symbolic Pointer of
Table I. This is a symbolic pointer that can refer to two objects:
mo2 and mo3. As a result, the execution is forked again,
resulting in two new states: s3 and s4. When we follow s3, the
state that resolves p1 to mo2, the query generated for the branch
condition at line 17 is q1, which is shown in column Query of
Table I. Note that this query does not contain the constraint
z > 0, since the expression of the branch condition at line 17
does not depend on the symbolic value z. This optimization is
known as slicing, and it’s widely used in symbolic execution
tools [16], [44].

As for s2, the other state forked at line 5, say here that the
memory objects allocated at lines 9 and 11 are:

mo4 = (400, 16, a4),mo5 = (500, 2, a5),mo6 = (600, 2, a6)

Similarly, s5 executes the same flow as s2, and the query
generated for the branch condition at line 17 is q3. The concrete
address values assigned in the states s3 and s5 are different,
so the mentioned queries (q1 and q3) cannot be reduced to the
same normal form. Therefore, standard query caching cannot
reuse the result of the first query for the second one.

Note that these two queries (q1 and q3) are equisatisfiable,
and not by chance: The query generated at line 17 is address-
agnostic, that is, for any memory layout that respects the
non-overlapping property and the original sizes of the involved
memory objects, the generated query will be equisatisfiable to
both of the queries above.

In order to detect equisatisfiable address-dependent queries,
we need to know which expressions in the constraints are
pointer expressions. Since the existing addressing model
encodes pointer values as integers, detecting these pointer
expressions is hard without additional annotations. However,
that can be easily achieved with the symbolic addressing model:
In this model the assigned base addresses are symbolic values
rather than integers, so if the normal form of one query can be
obtained from the normal form of another query by renaming
the symbolic base address values, and the sizes of the memory
objects corresponding to the matched address values are equal,
then these queries are equisatisfiable.

Using the symbolic addressing model in our example, instead
of queries q1 and q3, we generate q5 and q7 in conjunction with
the corresponding address constraints shown in column AC of
Table I. Since q7 can be obtained from q5 by renaming β2 to
β5 and β3 to β6, and the sizes of mo2 and mo3 match those
of mo5 and mo6, then these two queries can be determined
as equisatisfiable.

Table I shows the query generated at line 17 by each of the
four states, with both the existing addressing model and the
symbolic one. A similar equisatisfiability observation can be
made regarding the queries q6 and q8, generated by s4 and s6.

Algorithm 1 Equisatisfiability Algorithm.

1: function EQUI-SAT(e1, e2,m)
2: if e1 and e2 are unary expressions
3: op(e′1)← e1, op(e

′
2)← e2

4: return EQUI-SAT(e′1, e
′
2,m)

5: ...
6: if e1 and e2 are atomic symbolic base addresses
7: s1 ← GET-SIZE(e1), s2 ← GET-SIZE(e2)
8: return ADD-PAIR(m, e1, e2) and s1 = s2
9: if e1 and e2 are atomic arrays

10: return INIT-VAL(e1) = INIT-VAL(e2)
11: if e1 and e2 are write expressions
12: wr(a1, i1, v1)← e1, wr(a2, i2, v2)← e2
13: return EQUI-SAT(a1, a2,m) and
14: EQUI-SAT(i1, i2,m) and EQUI-SAT(v1, v2,m)

Our algorithm for determining the equisatisfiability of two
queries is given in Algorithm 1. We assume that the expressions
e1 and e2 passed to the function EQUI-SAT are represented
as described in Section III-A, using the symbolic addressing
model, i.e., base addresses are symbolic values. We also assume
these expressions are already in a canonical form, and that
they are represented using an abstract syntax tree (AST),
with support for: integers, symbolic values, unary and binary
operations, read and write operations, etc.

The algorithm is almost identical to a standard recursive
equality checking routine, except for two main cases:

Symbolic Base Addresses. We use the bidirectional map m,
to compute a bijection between the symbolic base addresses in
e1 and e2, if such bijection exists. First, we update at line 8
the map m with the new pair (e1, e2) using the function ADD-
PAIR, which returns true if the bijection property is preserved,
and false otherwise. Then, if ADD-PAIR succeeds, we take
the sizes of the memory objects corresponding to e1 and e2
(fetched at lines 7), and check their equality.

Arrays. We assume that atomic arrays (without write’s) are
initialized using a vector of constants, which can be accessed
using the INIT-VAL function. If e1 and e2 are atomic arrays
(line 9), then we check that they are equally initialized using the
INIT-VAL function. In the case of write expressions (line 11),
we perform a recursive check on the corresponding arrays,
indices, and values.

C. Limitations

The approach described in Section III-B cannot be applied to
queries which are not address-agnostic, that is, queries where
the ordering of the memory objects in the address space affects
the satisfiability. Such queries may be generated explicitly by
the symbolic execution engine, or when analyzing programs
that incur undefined behavior.

Undefined Behavior. Indeed, there are programs whose
execution depends on the relationships between the numerical
address values. For example, the result of the branch statement
at line 2 from Figure 3 clearly depends on the allocation
scheme implemented by the C standard library. For this reason,

1 char *p = malloc(10), *q = malloc(50);
2 if (p > q)
3 ...
4 if (*(p + 100) == *q)
5 ...

Fig. 3: An ill-behaved program due to unsafe pointer arithmetic.

the behavior of such statements is commonly considered to be
undefined. Note that not all pointer comparisons are necessarily
address-dependent. Comparisons such as p + i < p + j

have well-defined semantics, and comparisons between pointers
within the same object are commonly used and introduced as
part of standard compiler optimizations. However, it is known
that checking the presence or absence of undefined behavior
in a given program is hard [27].

Similarly, pointer arithmetic can also expose address de-
pendency, as demonstrated in the program from Figure 3:
The branch condition at line 4 holds, for example, when
p = 100 and q = 200, but may be false under other address
assignments. Again, verifying the absence of out-of-bounds
pointer arithmetic is too hard in general [46], [25]. Symbolic
executors can detect such bugs under some address assignments,
but not all, and definitely cannot prove their absence.

In the presence of such undefined behavior, our query caching
approach presented in Section III-B may exhibit unsoundness
or incompleteness. However, we would point out that in these
cases symbolic executors can not provide such guarantees
anyway, although our approach can lead to more incorrect
results.

Engine-Internal Queries. The symbolic execution engine
itself may internally generate queries which are not address-
agnostic. For example, when KLEE resolves a symbolic pointer
p, it generates the query β ≤ p < β + s in order to check if
p may refer to the memory object (β, s, a). To optimize the
search procedure it generates an additional validity query of
the form p < β+s to determine if the search can be completed
without scanning any additional memory objects. Clearly, the
last query is not address-agnostic: Let p be the symbolic pointer
encountered at line 17 from Figure 1:

rd(wr(wr(a1, 0, β2), 1, β3), i) + j

If the address constraints are:

β2 = 200, β3 = 300, β = 700

then the optimization query from above is valid, which is not
the case if β = 100.

In the case of engine-internal queries, the engine itself is
generating the query, so it is easy to tag these queries and
locally disable the query caching optimization for them.

In Section IV we formulate the sufficient conditions under
which the address dependent queries generated by the symbolic
execution engine are guaranteed to be address-agnostic, and
prove the correctness of our query caching approach with
respect to such queries.

IV. CORRECTNESS

In this section we justify the query caching approach
described in Section III, by arguing that from the satisfiability
or unsatifiability of a given query follows the same result under
any isomorphic address spaces.

The objects of interest are logical formulas ϕ and logical
structures M , where a structure satisfying a formula, i.e.,
a model, is denoted by M |= ϕ. For the interpretations of
expressions (terms) t occurring in a formula in the context of
a given structure M , we will use the notation tM .

We consider formulas in array theory [14], [24], with one-
dimensional arrays whose index sort is Int, as these are the ones
that occur in satisfiability queries during symbolic execution
of low-level program representations (e.g., LLVM IR). The
theory includes the interpreted function symbols: rd , wr , and
K(c) (an array initialized with the constant c).

Definition IV.1. Let L1 be the language of unquantified
formulas in the array theory with two sorts for scalars: Int
and Ptr. The Int sort admits all the linear integer arithmetic
operations; the Ptr sort admits equality, a special constant
symbol null, and a pointer arithmetic operator:

+ : Ptr× Int→ Ptr

The intended interpretation for Ptr will therefore be numeric,
and we assume it to be isomorphic to N in the sequel, with null
always interpreted as 0 and + as integer addition. Despite that,
the sorts Ptr and Int cannot be mixed freely in L1 formulas:
for example, comparing pointers with integers is prohibited.

Definition IV.2. An address space is a set of disjoint intervals,
canonically written as S =

{
[bi, ei]

}
1≤i≤r where 0 < bi ≤ ei.

Definition IV.3. Let t := tp+tn be an L1 term, where tp : Ptr
and tn : Int. We say that t respects an address space S in a
structure M if there exists an interval [bi, ei] ∈ S such that
tMp ∈ [bi, ei] and tM ∈ [bi, ei]. A formula ϕ ∈ L1 respects an
address space S in a structure M , when all its sub-terms of
the form tp + tn respect it.

This requirement is crucial to our treatment of formulas that
contain pointer arithmetic operations: It means that whenever
such operation occurs in ϕ, it may not take an address that
resides inside one interval and create an address that resides in
a different interval. In particular, it cannot cross the boundaries
and reach another interval.

Definition IV.4. Two address spaces S1, S2 will be considered
isomorphic if there is a bijection f : S1 → S2 such that:

∀[bi, ei] ∈ S1.
∣∣[bi, ei]∣∣ = ∣∣f([bi, ei])∣∣

where
∣∣[b, e]∣∣ = e− b denotes the size of the interval.

Such isomorphism induces an address translation function,
denoted by xt :

⋃
S1 →

⋃
S2, and defined as:

xt(pv) = pv + (b′i − bi)
where pv ∈ [bi, ei] and f([bi, ei]) = [b′i, e

′
i]

The translation xt admits a standard extension to sequences
(arrays) of addresses via pointwise application.

Definition IV.5. A formula ϕ ∈ L ⊇ L1 is address-agnostic
if for every two isomorphic address spaces S and S′, and a
structure M where ϕ respects S, there exists a structure M ′

such that:
• ϕ respects S′ in M ′

• M |= ϕ ⇐⇒ M ′ |= ϕ

Lemma IV.6. If ϕ1, ϕ2 ∈ L ⊇ L1 are address-agnostic, then
¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 are address-agnostic as well.

Lemma IV.7. A formula ϕ ∈ L1 is address-agnostic.

Proof. M ′ is obtained from M by applying the translation xt
to every interpretation of a Ptr- or Array[Ptr]-sorted element
in M . It can then be shown that for every subterm t of ϕ:
• If its sort is Int or Int[], then tM = tM

′
.

• If its sort is Ptr or Ptr[], then xt(tM) = tM
′
.

And consequently, that for every subformula ψ of ϕ:
M |= ψ ⇐⇒ M ′ |= ψ

The proof is done by induction on the structure of t and ψ.
This requires considering all the possible ways to construct
terms and formulas in L1, which are numerous. The only
interesting case is when t = t1 + t2 (with t1 : Ptr, t2 : Int),
where we use the xt translation together with the assumption
of Definition IV.3 to show that the address computation is
consistent between M and M ′. �

Lemma IV.7 states that in the context of L1, the concrete
values of interval boundaries [bi, ei] in the address space has
no effect on the truth value of the formula, and they can be
freely rearranged into any other locations. However, L1 is not
expressive enough for our purposes, as it allows construction of
pointer values from integers but not vice versa, thus preventing
the use of expressions such as rd(a, p1 − p2), which are
routinely generated by the symbolic execution engine for the
representation of pointer dereference operations.

Definition IV.8. Let L2 be the extension of L1 with a second
pointer arithmetic operation:

− : Ptr× Ptr→ Int

Ptr still corresponds to a numeric domain so that the sub-
traction operation is meaningful. In particular, (p+n)− p = n
should be a valid formula. We will use p1 < p2, p1 ≤ p2 as
abbreviations for p1 − p2 < 0, p1 − p2 ≤ 0, respectively.

In order for our formulas to still be address-agnostic, we
would have to avoid expressions such as p2− p1 (where p1, p2
are Ptr terms), since these will take different values depending
on the relative positioning of the intervals containing p1 and
p2, if they happen to reside in different address intervals.

Definition IV.9. Let a : Ptr be a constant symbol, n : Int, and
p : Ptr be an expression from L1. The guard constraint of p
over a and n, denoted by γ(p, a, n), is given by the formula:

a ≤ p < a+ n

Note that Definition IV.5 talks about structures and address
spaces where the formula respects the given address space, so
a+ n cannot cross the boundaries between intervals (objects).

Lemma IV.10. A guard constraint is address-agnostic.

Lemma IV.11. Let γ ∧ ψ be a formula in L2, where γ is a
guard constraint, i.e., γ(p, a, n), and ψ ∈ L2. If for every term
of the form p− p′ in ψ there exists k : Int such that:

• γ ⇒ p− p′ = k
• ψ[k/(p− p′)] is address-agnostic

then γ ∧ ψ is address-agnostic.

Proof. If there is k : Int such that γ ⇒ p − p′ = k, then in
particular γ ∧ ψ ⇔ γ ∧ ψ[k/(p − p′)]. From Lemma IV.10
we know that γ is address-agnostic, and we assumed that
ψ[k/(p − p′)] is address-agnostic, so using Lemma IV.6 we
conclude that their conjunction is address-agnostic as well. �

The only sources of pointer subtraction terms are subtraction
statements originating from the program and representations
of pointer dereferences. We assume that the program does not
subtract pointers that correspond to different objects (according
to the C standard), so under this assumption we can formulate
the following theorem:

Theorem IV.12. The constraints generated by the symbolic
execution engine are address-agnostic.

Proof. The proof is done by induction on the size of the path
constraints. The base case is trivial, i.e., PC = true. For the
induction step, we assume that PC is address-agnostic, and
need to prove that PC ∧ ϕ is address-agnostic as well.

When a pointer p is dereferenced, the engine checks if p may
point to a memory object mo = (β, s, a) using the following
resolution query:

PC ∧ 0 ≤ p− β < s

If this formula is satisfiable, i.e., p is resolved to mo, then the
accessed value is expressed using rd(a, p− β).

The main case to handle is when ϕ originates from a
branch condition: If ϕ ∈ L1, then PC ∧ ϕ is address-
agnostic according to Lemma IV.6. Otherwise, ϕ contains
a subtraction term p− β that was generated for representing
a pointer dereference (the case where it originates from a
program statement is easy to handle). According to the previous
paragraph, PC must contain the guard constraint:

γ := 0 ≤ p− β < s

and since the number of clauses in PC is finite, we can
assume that p ∈ L1. There clearly exists k : Int such that
γ ⇒ p− β = k, so in order to apply Lemma IV.11 we need
to make sure that PC ′ ∧ ϕ[k/(p − β)] is address-agnostic
(where PC := γ ∧ PC ′). Let ϕ′ := ϕ[k/(p− β)], if ϕ′ ∈ L1

then we can apply Lemma IV.11 to conclude that γ ∧ ϕ is
address-agnostic, and then PC ∧ ϕ = (γ ∧ PC ′) ∧ (γ ∧ ϕ) is
address-agnostic according to Lemma IV.6. Otherwise, ϕ′ ∈ L2

and we can apply again the same substitution steps as before,
until all the pointer subtraction terms in ϕ are substituted. �

As an example for the application of Lemma IV.11 consider
again the program from Figure 1. The access of array[i][j]
triggers a dereference of the symbolic pointer p = rd(a1, i)+j,

where a1 = wr(wr(K(0), 0, β2), 1, β3). This pointer is re-
solved to mo2 = (β2, 2, a2) using the following query:

PC := 0 ≤ i < 2 ∧ 0 ≤ j < 2 ∧ β2 ≤ p < β2 + 2

Here, γ (the guard constraint) is given by β2 ≤ p < β2 + 2,
and ψ is the rest of the formula. Since ψ is in L1, it easily
follows from Lemma IV.11 that PC is address-agnostic.

After the resolution, the query generated for the branch at
line 17 is given by:

PC ′ := PC ∧ rd(a2, p− β2) = 7

Here again, our γ will be β2 ≤ p < β2 + 2, and ψ is the rest
of the formula. It clearly holds for k = j that γ ⇒ p−β2 = k,
and the substitution ψ[k/(p− β2)] results in:

0 ≤ i < 2 ∧ 0 ≤ j < 2 ∧ rd(a2, k) = 7

which is a formula in L1 (and therefore address-agnostic), so
Lemma IV.11 can be applied again.

Remark. Our correctness arguments hold also for formulas
where a pointer is allowed to refer to multiple objects, as
happens in tools that apply state merging [44], [26], since the
address-agnostic property is preserved under disjunction. The
notion of the red zone, discussed in Section II, can be easily
incorporated into our correctness arguments and requires no
modifications to the proof: It is simply sufficient to consider
each interval [bi, ei] to consist of the padding block and the
address block allocated for the respective memory object. Since
the size of the padding is constant for all allocations, the
resulting address spaces will still be isomorphic.

V. IMPLEMENTATION

We implemented our query caching approach on top of
the state of the art symbolic executor KLEE [16], configured
with the STP [24] solver. Similarly to [45], we modified the
engine’s allocator to return the allocated base addresses as
symbolic values, rather than concrete values. Consequently,
the expressions (and queries) constructed by the engine do not
contain any concrete address values, i.e., integers. In addition,
we extended the symbolic state with the address constraints,
which are used to substitute the address values in the constraints
before they are passed to the SMT solver (Section III-A).

In KLEE, the existing query cache is implemented using a
hash table of queries. To make the lookup and insert operations
efficient, a hash value is maintained for each query (and each
expression), which is then used as a key for that hash table.
Then, the bucket retrieved with that key is scanned to find the
matching query based on syntactic equality. To enable efficient
caching for our query caching approach as well, we maintain
additional hash value for each expression which captures its
structure regardless of the symbolic base address expressions.
More technically, when we compute this hash value, we set
the hash value of each symbolic base address to a pre-defined
constant. For example, the following queries will have the
same hash value:

rd(wr(a, 1, β2)) = 0 rd(wr(a, 1, β3)) = 0

As discussed in Section III, our approach does not apply
to queries whose satisfiability depends on the ordering of the
memory objects in the address space. When such queries are
not engine-internal, i.e., generated as a result of a branch
in the program, our approach may lead to incorrect results.
Automatically detecting such queries is not straightforward,
and we leave it for future research.

VI. EVALUATION

In our experiments, we evaluate our address-aware query
caching approach (AA) against the standard approach used
in vanilla KLEE (Base). The challenge of caching address-
dependent queries was partially and heuristically addressed in
the work that introduced the dynamically segmented memory
model, using a segment reuse heuristic (see paragraph Reusing
Segments, Section 2.3.3 from [45]): There, when a new segment
is dynamically created, it attempts to reuse previously allocated
base addresses, in order to reduce the chance for cache
misses. Therefore, we evaluate our approach under two memory
models: The forking memory model (FMM), i.e., vanilla KLEE,
and the dynamically segmented memory model (DSMM),
introduced by [45]. When running under DSMM, we evaluate
our approach (while disabling the segment reuse heuristic)
against DSMM when that heuristic is enabled. An evaluation
with different memory models also demonstrates the robustness
and applicability of our approach.

Our evaluation is structured as follows: In section VI-A
we present our benchmarks. In section VI-B we provide
an empirical validation for our approach. In Section VI-C
we show the effectiveness of our approach on benchmarks
which generate address-dependent queries. In Section VI-D we
measure the overhead of our approach on benchmarks that do
not generate address-dependent queries, where our approach
is not expected to produce speedups. Our replication package
is available at https://doi.org/10.6084/m9.figshare.13042277.

Experimental Setup. We performed our experiments on a
machine running Ubuntu 16.04, equipped with an Intel i7-6700
processor and 32GB of RAM.

A. Benchmarks

Our experiments used the following code bases as bench-
marks: GNU m4 [5] (80K SLOC) is a macro processor included
in many Unix-based systems. GNU make [6] (28K SLOC)
is a tool which controls the generation of executables and
other non-source files, also widely used in Unix-based systems.
SQLite [11] (127K SLOC) is one of the most popular SQL
database libraries. Apache Portable Runtime [1] (60K SLOC) is
a library used by the Apache HTTP server that provides cross-
platform functionality for memory allocation, file operations,
containers, and networking. The libxml2 [9] (197K SLOC)
library is a XML parser and toolkit developed for the Gnome
project. The expat [2] (23K SLOC) library is a stream-oriented
XML parser, used in many open-source projects including
Mozilla, Perl, Python and PHP. GNU bash [3] (106K SLOC)
is the well-known Unix shell written for the GNU project.
The json-c [8] (7K SLOC) library is used for encoding and

decoding JSON objects. GNU Coreutils [4] (188K SLOC) is
a collection of utilities for file, text, and shell manipulation.
The libosip [7] (11K SLOC) library is used for parsing SIP
messages. The libyaml [10] (9K SLOC) library is used for
parsing and emitting data in the YAML format.

In Section VI-C we evaluate our approach on a set of
terminating programs that generate address-dependent queries.
Such queries are typically generated in the presence of symbolic
pointers, which are created, for example, when data structures
such as hash tables are indexed using a symbolic value as
key. Our benchmarks consist of both whole-program utilities
(m4, make, bash) and libraries (sqlite, apr, libxml2, expat and
json-c). Four of our benchmarks (m4, make, sqlite, and apr)
were used in previous work related to symbolic pointers [30],
[45]: In m4 and make, which are language-processing utilities,
hash tables are used to store the values of variables, functions,
and strings. To avoid the analysis of these programs from
getting stuck in the early stages and to achieve its termination,
these programs are run with a partially symbolic input. The
driver in apr focuses on the runtime’s hash table API, and the
driver in sqlite creates database triggers using concrete and
symbolic SQL queries. Our four additional benchmarks are
libxml2, expat, bash, and json-c: As was done in the cases of
m4 and make, we ran bash with a partially symbolic input in
order to reach the deeper parts of the code that operate on the
various tables that store variables, strings, and functions. In
libxml2 and expat we built drivers that parse symbolic HTML
and XML inputs, respectively. In json-c we built a driver that
constructs a JSON object which internally uses hash tables.

In Section VI-D we evaluate our approach on a set of
programs that don’t generate address-dependent queries: We
chose 10 utilities from coreutils that behave deterministically
across multiple runs, and built drivers for the main parsing
API’s in both libosip and libyaml.

B. Empirical Validation

In this experiment, we provide an empirical validation for the
correctness of our approach using the following methodology:
We ran KLEE on each of the benchmarks with the two
approaches (Base and AA), and as our approach must not
affect the exploration, we validated that both the number of
explored paths and the achieved coverage are indeed identical
in both runs. When running with our approach, we additionally
checked for each cached query that its cached result is correct
by simply comparing it with the result reported by the SMT
solver. We performed this experiment using the two memory
models (FMM and DSMM).

C. Performance

In this experiment, we compare the performance of the two
approaches (Base and AA). KLEE in its default configuration
uses two constraint solving heuristics: the existing query
caching and the counter-example (CEX) caching. Therefore,
in order to have a complete comparison against vanilla KLEE,
we enable the CEX caching in our experiments as well. For
each approach, we run KLEE with the DFS search heuristic

TABLE II: Classification of queries and their amounts.

Program Total C1 C2 C3

m4 14,022 9,589 9,127 6,394

make 2,565,399 2,477,145 90,027 69,535

sqlite 26,990 18,407 15,589 13,783

apr 15,013 8,960 8,960 8,448

libxml2 708,101 410,789 347,420 347,420

expat 1,797,033 945,192 102,903 102,903

bash 54,078 19,051 10,840 7,860

json-c 28,476 17,484 17,263 14,311

TABLE III: Number of queries with both approaches.

Program FMM DSMM
Base AA Base AA

m4 10,792 4,265 1,600 1,289
make 347,324 45,471 50,558 9,753
sqlite 5,622 4,681 14,563 12,993
apr 445 300 126 86
libxml2 124,782 6,118 124,782 6,118
expat 89,740 31,747 89,736 31,761
bash 8,538 4,479 7,542 4,098
json-c 15,364 5,246 2,757 1,523

and the deterministic memory allocator, until all the paths are
explored. In each run we record the following parameters: the
number of queries reaching the SMT solver, the termination
time (i.e., analysis time), the size of the query cache, and the
memory usage.

To get an insight into the type of queries encountered in our
benchmarks, we analyze in Table II the queries generated by
vanilla KLEE: In KLEE, the query caching heuristic handles
only satisfiability and validity queries, and does not handle
model (assignment) queries. As discussed in Section III, not
all the queries passed to the query caching heuristic can be
handled with our approach. Column Total shows the total
number of queries generated during the analysis. Column C1

shows the number of queries passed to the query caching
heuristic. Column C2 shows the number of queries passed
to the query caching heuristic which can be handled by our
approach. Column C3 shows the number of queries passed
to the query caching heuristic which can be handled by our
approach and are address-dependent. Note that the number of
queries that pass through the cache but cannot be handled by
our approach, i.e., C2 − C3, is relatively low.

Table III shows the number of queries for each benchmark
with the two approaches and the different memory models.
Here, we report the number of queries that reached the SMT
solver itself, that is, those that were not handled by any of the
constraint solving heuristics (query caching or CEX caching).
In FMM, the reduction in the number of queries with our
approach varies between 1.20× (in sqlite) and 20.40× (in
libxml2), and its average is 5.11×. In DSMM, the reduction
varies between 1.12× (in sqlite) and 20.40× (in libxml2), and
its average is 4.48×.

TABLE IV: Termination time in hh:mm:ss.

Program FMM DSMM
Base AA Base AA

m4 00:13:16 00:04:59 00:19:17 00:14:55
make 06:46:44 02:30:51 03:56:42 01:47:23
sqlite 00:17:20 00:14:24 04:00:17 03:12:22
apr 00:57:33 00:39:05 00:20:20 00:13:39
libxml2 02:33:33 00:17:09 02:27:35 00:17:12
expat 00:26:02 00:23:19 00:25:13 00:23:06
bash 02:37:48 01:23:30 02:39:04 01:14:18
json-c 00:31:36 00:13:20 00:08:05 00:04:19

Table IV shows the termination time for each benchmark
with the two approaches and the different memory models.
In FMM, the speedup relatively to the existing query caching
varies between 1.11× (in expat) and 8.96× (in libxml2), and
its average is 2.80×. Note that the speedup depends not only
on the reduction in the number of queries, but also on the
complexity of the queries. For example, the reduction in the
number of queries in make is roughly 4 times higher than
in bash (7.63× vs. 1.90×), but the speedup in make is only
1.43× higher than in bash (2.70× vs 1.90×) as the queries
in bash are more complex due to larger SMT arrays, that
is, array constraints with more write expressions. In DSMM,
the speedup varies between 1.09× (in expat) and 8.59× (in
libxml2), and its average is 2.73×. The queries in expat are
relatively simple compared to other benchmarks, therefore the
performance gains are less significant in that case.

Table V shows the size of the query cache for each
benchmark with the two approaches and the different memory
models. In FMM, the reduction in the cache size varies between
1.29× (in sqlite) and 24.68× (in libxml2), and its average is
6.06×. In DSMM, the reduction varies between 1.18× (in
sqlite) and 24.68× (in libxml2), and its average is 4.93×.

In general, the number of explored paths in DSMM is
guaranteed to be at most as high as in FMM, and lower
in programs whose analysis trigger symbolic pointers with
multiple resolutions. Therefore, in such programs there is also a
reduction in the number of queries and the cache size. However,
in DSMM the queries are potentially more complex, so the
termination time is not necessarily lower compared to FMM,
as was shown in [45] and as can be seen in Table IV. The
number of explored paths in libxml2 and expat is identical with
FMM and DSMM, but in expat there is a slight difference in
the number of queries (and cache size) due to non-determinism
introduced by the SMT solver in model (assignment) queries.

Figure 4 shows the memory usage for each of the benchmarks
with the two approaches under the different memory models.
Clearly, the size of the query cache affects the memory usage,
that is, a smaller cache should result in lower memory usage. In
benchmarks where the cache size is relatively low (m4, sqlite,
apr, bash and json-c), the reduction in the cache size has little
effect on the memory usage, which is roughly the same with
both approaches. However, in other benchmarks where the
cache is larger, the difference in the cache size results in larger

TABLE V: The size of the query cache with both approaches.

Program FMM DSMM
Base AA Base AA

m4 11,780 3,493 1,631 1,341
make 348,210 41,927 51,064 12,404
sqlite 6,898 5,354 10,680 9,071
apr 496 279 130 81
libxml2 136,165 5,517 136,165 5,517
expat 92,383 34,226 92,382 34,226
bash 8,774 4,453 7,712 4,308
json-c 15,998 3,634 2,906 1,336

0

500

1000

1500

m4 make sqlite apr libxml2 expat bash json

Base AA

0

500

1000

1500

m4 make sqlite apr libxml2 expat bash json

Fig. 4: Memory usage (in MB) with both approaches under
FMM (top) and (DSMM) (bottom).

difference in memory usage: For example, when FMM is used,
the memory usage in make and libxml2 is reduced by roughly
800MB and 100MB, respectively.

The overall performance improvement with our approach
suggests that there are queries that are handled by our approach
and aren’t handled by the CEX caching 4. Therefore the CEX
caching should be seen as complementary to our approach.

D. Overhead

In Section VI-C we showed how our approach can im-
prove the performance for programs which generate address-
dependent queries. However, our approach imposes additional
computational overhead due to two main reasons: maintain-
ing additional symbolic values for address expressions and
substituting expressions (Section III-A).

4 We internally experimented also with an optimized version of the CEX
caching heuristic (using the cex-cache-try-all option), which resulted in even
better improvement for our approach.

In this experiment, we show the runtime overhead of our
approach for programs that do not generate address-dependent
queries: coreutils, libosip and libyaml. For each program, we
proceed with the following methodology under each of the
memory models: First, we ran KLEE for roughly one hour, and
recorded the number of executed instructions for each program.
Then we ran each program up to the recorded number of
instructions with both of the approaches (Base and AA).

In FMM, with regards to termination time, our approach
had a maximum overhead of 17% (in libosip) and an average
overhead of 6%. There was no significant difference in memory
usage between the two approaches, with our approach having
an overhead of 3%. Similarly to our query caching approach,
DSMM relies on the symbolic addressing model as well, which
is the main source of overhead compared to vanilla KLEE
(FMM). Therefore in DSMM, where the symbolic addressing
model is used in both of the approaches, the performance is
almost identical in terms of time and space.

Similarly to Section VI-C, we validated that the number of
explored paths is identical with both approaches, and performed
an additional run for each program to validate the correctness
of our query caching approach with respect to the SMT solver.

VII. DISCUSSION AND RELATED WORK

We presented our approach assuming that symbolic reads and
writes are encoded using array theory. However, our approach
does not specifically relies on such encoding and will work with
other encodings, such as if-then-else (disjunction) expressions
(e.g., ANGR [44]). Moreover, our approach is agnostic to the
underlying memory allocation scheme, and can work with a
linear deterministic scheme as well as other schemes that are
based on system API’s (e.g., malloc). Therefore, we believe
that our approach can be applied to other tools that generate
address-dependent queries (e.g., ANGR and Manticore).

The idea of improving constraint solving by reusing pre-
viously solved results has been investigated in the past:
KLEE [16] uses counter-example caching, which stores results
into a cache that maps constraint sets to concrete variable
assignments. Using these mappings, KLEE can solve several
types of similar queries, involving subsets and supersets of
the constraint sets already cached. Green [47] is a framework
that enables reusing constraints results within a single run as
well as across different runs and programs. To enable efficient
reuse, the technique uses slicing to reduce the complexity of
the constraints, and canonization to store the constraints in
a normal form. GreenTrie [28] is an extension of Green that
detects implications between constraints to improve caching
for satisfiability queries. Cashew [15] is a caching framework
for model-counting queries built on top of Green [47], which
introduces an aggressive normalization scheme and parame-
terized caching. Eiers et al. [22] use subformula caching to
improve the performance of model counting constraint solvers
in the context of quantitive program analysis. These approaches
do not solve the problem presented in this paper, as they fail
to detect equisatisfiable address-dependent queries when they
are syntactically distinct, due to address constants.

Other approaches have been proposed to scale constraint solv-
ing in the context of symbolic execution: splitting constraints
into independent sets [17], [16], multiple solvers support [37],
interval-based solving [20], and fuzzing-based solving [32],
[38]. Perry et al [40] focus on reducing the cost of array theory
constraints using several semantics-preserving transformations.
These transformations attempt to eliminate array constraints as
much as possible by replacing them with constraints over their
indices and values. Modern SMT solvers such as CVC4 [13],
Z3 [18], and Yices [21], have support for incremental solving,
which enables learning lemmas that can be later reused for
solving similar queries. These approaches are orthogonal to
our approach, with which they could be combined.

State merging [41], [31], [12], [43] enables fusing multiple
states into a single state, thus potentially increasing the chance
for query cache hits. In contrast to state merging, our approach
does not introduce if-then-else expressions, thus avoiding the
negative effect on the SMT solver. In addition, our approach
is control-independent, and therefore can reuse query results
even when state merging is not applicable.

Segmented memory model (SMM) [30] is a technique for
handling symbolic pointers that have multiple resolutions:
The memory is partitioned into segments using static pointer
analysis, such that each pointer refers to a single segment,
thus avoiding forks when symbolic pointers are dereferenced.
Similarly to DSMM [45], this approach mainly focuses on
mitigating path explosion, rather than on optimizing constraint
solving. SMM does not provide a solution to our problem for
basically the same reason that DSMM does not: The objects
can still be allocated in different segments, or allocated in
different offsets within the same segment, which would result
in the same problem as happens when base addresses differ.
Also note that the challenge of caching address-dependent
queries exists not only when symbolic pointers have multiple
resolutions, but also when they are resolved to a single object.

VIII. CONCLUSION AND FUTURE WORK

We proposed a novel query caching approach in the context
of symbolic execution, which addresses the challenge of
caching address-dependent queries. We formally discussed
the correctness guarantees of our approach, and provided
an additional empirical validation. We demonstrated in our
experiments that our approach can lead to order-of-magnitude
speedup on programs with address-dependent queries, while
maintaining a relatively low overhead in other cases.

Our approach cannot be applied to queries which are not
address-agnostic. Therefore, coming up with a scheme that can
handle such queries can further improve performance, especially
in programs where symbolic pointer resolution is expensive.
Our approach can handle satisfiability and validity queries, but
model queries remain unhandled. Applying a similar approach
for such queries, including address-dependent ones, is another
research direction.
Acknowledgements. The research leading to these results has
received funding from the Pazy Foundation and the Israel
Science Foundation (ISF) grant No. 1996/18.

REFERENCES

[1] Apache Portable Runtime. https://apr.apache.org/.
[2] expat. https://libexpat.github.io.
[3] GNU Bash. https://www.gnu.org/software/bash.
[4] GNU Coreutils. https://www.gnu.org/software/coreutils/.
[5] GNU M4. https://www.gnu.org/software/m4/.
[6] GNU Make. https://www.gnu.org/software/make/.
[7] GNU oSIP. https://www.gnu.org/software/osip.
[8] json-c. https://github.com/json-c/json-c.
[9] libxml2. http://www.xmlsoft.org.

[10] libyaml. https://github.com/yaml/libyaml.
[11] SQLite Database Engine. https://www.sqlite.org/.
[12] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing symbolic

execution with veritesting,” in Proc. of the 36th International Conference
on Software Engineering (ICSE’14), May 2014.

[13] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Proc. of the 23rd International
Conference on Computer-Aided Verification (CAV’11), Jul. 2011.

[14] A. R. Bradley, Z. Manna, and H. B. Sipma, “What’s decidable about
arrays?” in Verification, Model Checking, and Abstract Interpretation.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 427–442.

[15] T. Brennan, N. Tsiskaridze, N. Rosner, A. Aydin, and T. Bultan,
“Constraint normalization and parameterized caching for quantitative
program analysis,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 535–546.

[16] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,” in
Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08), Dec. 2008.

[17] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE:
Automatically Generating Inputs of Death,” in Proc. of the 13th ACM
Conference on Computer and Communications Security (CCS’06), Oct.-
Nov. 2006.

[18] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[19] L. De Moura and N. Bjorner, “Satisfiability modulo theories: introduction
and applications,” Communications of the ACM, vol. 54, no. 9, pp. 69–77,
2011.

[20] O. S. Dustmann, K. Wehrle, and C. Cadar, “Parti: a multi-interval theory
solver for symbolic execution.” 2018.

[21] B. Dutertre and L. De Moura, “The yices smt solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, no. 2, pp. 1–2, 2006.

[22] W. Eiers, S. Saha, T. Brennan, and T. Bultan, “Subformula caching
for model counting and quantitative program analysis,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2019, pp. 453–464.

[23] B. Elkarablieh, P. Godefroid, and M. Y. Levin, “Precise pointer reasoning
for dynamic test generation,” in Proc. of the International Symposium
on Software Testing and Analysis (ISSTA’09), Jul. 2009.

[24] V. Ganesh and D. L. Dill, “A decision procedure for bit-
vectors and arrays,” in Proceedings of the 19th International
Conference on Computer Aided Verification, ser. CAV’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 519–531. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1770351.1770421

[25] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas,
N. Rinetzky, L. Ryzhyk, and M. Sagiv, “Simple and precise static
analysis of untrusted linux kernel extensions,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, p. 1069–1084.

[26] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz
testing,” in Proc. of the 15th Network and Distributed System Security
Symposium (NDSS’08), Feb. 2008.

[27] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in Proc.
of the 2nd ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE’01), Jun. 2001.

[28] X. Jia, C. Ghezzi, and S. Ying, “Enhancing reuse of constraint solutions
to improve symbolic execution,” in Proc. of the International Symposium
on Software Testing and Analysis (ISSTA’15), Jul. 2015.

[29] W. Jin and A. Orso, “Bugredux: Reproducing field failures for in-house
debugging,” in Proc. of the 34th International Conference on Software
Engineering (ICSE’12), Jun. 2012.

[30] T. Kapus and C. Cadar, “A segmented memory model for symbolic
execution,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019. ACM,
2019, pp. 774–784.

[31] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging
in symbolic execution,” in Proc. of the Conference on Programing
Language Design and Implementation (PLDI’12), Jun. 2012.

[32] D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett, “Just fuzz it:
solving floating-point constraints using coverage-guided fuzzing,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 521–532.

[33] P. D. Marinescu and C. Cadar, “KATCH: High-coverage testing of
software patches,” in Proc. of the joint meeting of the European Software
Engineering Conference and the ACM Symposium on the Foundations
of Software Engineering (ESEC/FSE’13), Aug. 2013.

[34] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering. ACM, 2016, pp.
691–701.

[35] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2019, pp. 1186–1189.

[36] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
Program repair via semantic analysis,” in Proc. of the 35th International
Conference on Software Engineering (ICSE’13), May 2013.

[37] H. Palikareva and C. Cadar, “Multi-solver support in symbolic execution,”
in Proc. of the 25th International Conference on Computer-Aided
Verification (CAV’13), Jul. 2013.

[38] A. Pandey, P. R. G. Kotcharlakota, and S. Roy, “Deferred concretization
in symbolic execution via fuzzing,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 228–238. [Online]. Available:
https://doi.org/10.1145/3293882.3330554

[39] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and
N. Rungta, “Symbolic PathFinder: integrating symbolic execution with
model checking for Java bytecode analysis,” Sep. 2013.

[40] D. M. Perry, A. Mattavelli, X. Zhang, and C. Cadar, “Accelerating
array constraints in symbolic execution,” in Proc. of the International
Symposium on Software Testing and Analysis (ISSTA’17), Jul. 2017.

[41] D. Qi, H. D. Nguyen, and A. Roychoudhury, “Path exploration based
on symbolic output,” 2011.

[42] D. A. Ramos and D. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” in Proc. of the 24th USENIX Security
Symposium (USENIX Security’15), Aug. 2015.

[43] K. Sen, G. Necula, L. Gong, and W. Choi, “Multise: Multi-path symbolic
execution using value summaries,” in 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE’15). ACM,
2015, aCM SIGSOFT Distinguished Paper Award.

[44] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State
of) The Art of War: Offensive Techniques in Binary Analysis,” in Proc.
of the IEEE Symposium on Security and Privacy (IEEE S&P’16), May
2016.

[45] D. Trabish and N. Rinetzky, “Relocatable addressing model for symbolic
execution,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2020. New
York, NY, USA: Association for Computing Machinery, 2020, p. 51–62.
[Online]. Available: https://doi.org/10.1145/3395363.3397363

[46] A. Venet and G. Brat, “Precise and efficient static array bound checking
for large embedded c programs,” in Proceedings of the ACM SIGPLAN
2004 Conference on Programming Language Design and Implementation,
2004, p. 231–242.

[47] W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: reducing, reusing and
recycling constraints in program analysis,” in Proc. of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE’12), Nov.

2012.

