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ABSTRACT
Symbolic execution (SE) is a widely used program analysis tech-
nique. Existing SE engines model the memory space by associating
memory objects with concrete addresses, where the representation
of each allocated object is determined during its allocation. We
present a novel addressing model where the underlying representa-
tion of an allocated object can be dynamically modified even after
its allocation, by using symbolic addresses rather than concrete
ones. We demonstrate the benefits of our model in two applica-
tion scenarios: dynamic inter- and intra-object partitioning. In the
former, we show how the recently proposed segmented memory
model can be improved by dynamically merging several object
representations into a single one, rather than doing that a-priori
using static pointer analysis. In the latter, we show how the cost
of solving array theory constraints can be reduced by splitting the
representations of large objects into multiple smaller ones. Our pre-
liminary results show that our approach can significantly improve
the overall effectiveness of the symbolic exploration.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Symbolic execution (SE) is a widely used program analysis tech-
nique, that lies at the core of many applications including automatic
test generation [3, 4, 27], bug finding [15], debugging [19], patch
testing [23, 29], automatic program repair [24, 25], and reverse
engineering [7]. During symbolic execution, the program is run
with a symbolic input, rather than a concrete one. Whenever the
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symbolic executor reaches a branch that depends on a symbolic
value, an SMT solver [12] is used to determine the feasibility of the
branch sides, and the appropriate paths are further explored while
updating their paths constraints with a corresponding constraint.
A test case for a given explored path can be generated by asking
the solver to generate a concrete assignment to the accumulated
path constraints.

In modern symbolic executors such as KLEE [3] and ANGR [33],
the address space of a symbolic state is modeled using a set of
memory objects, where each memory object has a fixed concrete
address and its own unique and non-overlapping address range.
This model is a reasonable implementation choice, but identifying
memory object addresses with concrete values is not essential: As
long as the non-overlapping property of the memory objects holds,
the values of the assigned addresses should not affect the execution.

We propose a new addressing model where the address expres-
sions observable by the symbolic state are symbolic values rather
than concrete ones. We preserve the non-overlapping property by
maintaining additional address constraints, which constrain each
symbolic address value to some constant value. This addressing
model gives us the ability to relocate a given memory object, that
is, modify its underlying address constraint in a way that is trans-
parent to the symbolic state. Note that relocating a memory object
is not possible under the existing addressing model, since an object
is allocated with a fixed constant address that can’t be modified.

To illustrate the benefits of such addressing model, consider the
program from Figure 1, inspired by code found in our benchmarks.
First, the program executes an initialization loop, where at each
iteration it creates a hash table (line 43) and initializes it with some
values (line 45). Then, at line 49 it performs a lookup on one of the
tables with a symbolic key k . The lookup function table_lookup
computes the hash of the input key, and iterates over the nodes
of the relevant bucket to find the matching element. When the
function table_lookup is called at line 49, the value of the pointer
node at line 18 is symbolic, since it depends on the symbolic hash
value which is derived from the symbolic value k. Therefore, at
line 20, node->key dereferences a symbolic pointer.

Symbolic pointers present a challenge for SE [4, 20]. Modern
SE systems associate each memory object with a different SMT
array. Queries involving memory objects are then translated into
SMT constraints involving the corresponding SMT arrays. When a
symbolic pointer is dereferenced, the SE engine needs to resolve that
symbolic pointer, that is, determine the memory objects it can refer
to. If the symbolic pointer is resolved to more than one memory
object, thenwe are in the case ofmultiple resolution. Several memory
models for handling multiple resolutions have been considered
in the past: The forking model [3, 27] forks the current symbolic
state for each of the resolved objects, and in each forked state
constrains the symbolic pointer expression to the range of the
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resolved object. This approach is relatively efficient in terms of
constraint solving, but may contribute to path explosion due to
forking. The merging model [15, 33] creates a disjunction with
one disjunct for each of the resolved objects. This way, forks are
avoided but the path constraints become more complex due to the
introduction of disjunctions.

Similarly to themergingmodel, the segmentedmemorymodel [20]
proposes an approach which avoids forking, but achieves this by
using array theory [14] rather than disjunction. In this model,
the memory is split into segments using static pointer analysis
[18, 30, 34, 35], such that each pointer (concrete or symbolic) refers
to objects in a single segment. The segments are computed as fol-
lows: First, static pointer analysis is invoked to compute the points-
to set of each pointer, that is, a set of abstract memory objects which
are identified by static allocation sites. Then, every two intersecting
points-to sets are merged into one points-to set, until a fixpoint
is reached, that is all the points-to sets are disjoint. A segment is
created for each of these disjoint points-to sets, such that all the
memory objects associated with that points-to set will be allocated
in that segment.

With this approach, forks are avoided when symbolic pointers
are encountered, as each pointer is guaranteed to point to exactly
one segment. However, this approach is limited by the precision of
pointer analysis, and the created segments might contain too many
objects. A big segment corresponds to a big SMT array1, which
results in more complex constraints. To illustrate the limitations of
pointer analysis, consider again the program at Figure 1. Pointer
analysis can’t distinguish between the different objects that are
allocated at line 12, as they all have the same static allocation site.
As a result, the bucket arrays of all 3 hash tables are allocated in one
segment. Similarly, all the nodes allocated at line 33 are allocated in
one segment as well. The SMT arrays of both segments are involved
in the constraints, as both are accessed with a symbolic offset: The
segment of buckets at line 18, and the segment of nodes at line 20.
The sizes of these SMT arrays are at least three times bigger than
those created by the forking model, due to merging of spurious
objects. Therefore, despite of the reduction in the number of paths,
the forking model still outperforms the segmented memory model
in this case.

With our addressing model, we can dynamically relocate a mem-
ory object, in a way that is transparent to the symbolic state. Instead
of determining the segments ahead of time, we create them on de-
mand: If a symbolic pointer is resolved to multiple memory objects,
we create a new segment and relocate the resolved memory ob-
jects to that segment. Now, a segment will contain only memory
objects that can be pointed by a given symbolic pointer, without
any spurious ones. The symbolic pointer at line 18 is resolved to
one memory object, the bucket array of the first hash table, which
doesn’t require creating a segment. The symbolic pointer at line 20
is resolved only to nodes from the first hash table, so the created
segment doesn’t contain nodes from the other two hash tables. This
way, we are able to avoid forking while creating smaller SMT arrays,
which allows us to outperform both the segmented and the forking
memory models.

1SMT arrays are actually unbounded, but the SE engine records the allocated size and
never accesses elements beyond it.

Another challenge arising from the Program in Figure 1 relates
to solving array theory [14] constraints. An array access with a
concrete offset can be handled similarly to scalar variables, but
accessing an array with a symbolic offset is more challenging, as
the symbolic offset can refer to multiple locations in the array. In
that case, the accessed value is expressed using an SMT formula
over arrays, which creates a variable for each offset of the array.
Such formulas are hard to solve, especially with big arrays, thus
hindering symbolic execution. The hash tables created at line 43
are initialized with a bucket array of 300 entries, therefore the
size of its corresponding SMT array is 2400 bytes. When calling
table_lookup at line 49, the bucket is accessed with a symbolic
offset at line 18, which triggers the usage of array theory. This
constraint propagates into the path constraints that are created
later during execution, thus slowing down the exploration.

With our addressing model, when a big enough memory object
is accessed with a symbolic offset, we can relocate that memory
object and split it into several smaller adjacent memory objects. For
example, the symbolic pointer at line 18 was resolved to exactly
one memory object, the bucket array of the hash table. Now, when
this memory object is relocated and split, that symbolic pointer is
resolved to multiple memory objects with smaller SMT arrays. In
this case, despite of having more explored paths due to additional
multiple resolutions, the reduced complexity of the constraints
eventually results in faster exploration.

Our main contributions can be summarized as follows:

(1) We propose a new addressing model, that allows seamless
and dynamic relocation of memory objects during symbolic
execution.

(2) We provide an implementation based on KLEE [3], a state-
of-the-art symbolic executor, which we make available as
open source.2

(3) We show the benefits of our addressing model in two scenar-
ios: improving the segmented memory model, and reducing
the cost of solving array theory constraints with big arrays.

2 PROPOSED ADDRESSING MODEL
In this section, we shortly describe the current addressing model of
SE engines and present our relocatable model.

2.1 Existing Addressing Model
Symbolic executors, e.g., KLEE, represent the program’s address
space using a set of memory objects:

mo = (addr, size, arr ) ∈ 2N
+×N+×A .

A memory object mo = (addr, size, arr ) has a concrete base address
addr ∈ N+ and spans size ∈ N+ bytes. In addition, a memory object
is backed by an SMT array arr ∈ A with the same size size, which
tracks the values stored into the memory object. If a value v is
written to the e-th byte of the object, the array arr ofmo is replaced
by new array generated using a store expression: store (arr, e,v ). If

2https://www.tau.ac.il/~davivtra/projects/ram/.
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1 typedef struct node_s {

2 unsigned long data;

3 char *key;

4 struct node_s *next;

5 } node_t;

6 typedef struct {

7 node_t **buckets;

8 size_t size;

9 } table_t;

10
11 void table_init(table_t *t, size_t n) {

12 t->buckets = calloc(n, sizeof(node_t *));

13 t->size = n;

14 }

15
16 node_t *table_lookup(table_t *t, unsigned k) {

17 unsigned long h = hash(&k, sizeof(k)) % t->size;

18 node_t *node = t->buckets[h];

19 while (node != NULL) {

20 if (memcmp(&node->key, &k, sizeof(unsigned)) == 0) {

21 return node;

22 }

23 node = node->next;

24 }

25 return NULL;

26 }

27
28 void table_insert(table_t *t, unsigned k, int data) {

29 if (table_lookup(t, k)) {

30 return;
31 }

32 unsigned long h = hash(&k, sizeof(k)) % t->size;

33 node_t *node = calloc(1, sizeof(node_t));
34 node->key = k;

35 node->data = data;

36 node->next = t->buckets[h];

37 t->buckets[h] = node;

38 }

39
40 int main(int argc, char *argv[]) {

41 table_t tables[3];

42 for (unsigned i = 0; i < 3; i++) {

43 table_init(&tables[i], 300);

44 for (unsigned j = 0; j < 5; j++) {

45 table_insert(&tables[i], j, 7);

46 }

47 }

48 unsigned k; // symbolic

49 table_lookup(&tables[0], k);

50 return 0;

51 }

Figure 1: Motivating example.

the program accesses the e-th byte of the object, the read value is
expressed using a select expression: select (arr, e ). 3

The allocated objects span distinct addresses, i.e., for every two
distinct memory objects (addr1, size1, arr1) and (addr2, size2, arr2)
it holds that:

[addr1, addr1 + size1) ∩ [addr2, addr2 + size2) = ∅.

3 SE engines use an optimized representation of the memory object when the object
is always accessed using concrete (non-symbolic) offsets. For simplicity, we avoid
describing this optimization.

The non-overlapping requirement reflects the fact that different
objects are located at different parts of the memory, and enables
identifying memory objects by addresses: A concrete address addr
can belong to at most one object. Thus, when the program accesses
memory location addr , the SE engine can determine which SMT
array represents the content at that address and act accordingly.

2.2 Relocatable Addressing Model
We propose a new addressing model, where the address of an object
is a symbolic value, rather than a concrete one. As before, the pro-
gram’s address space is represented using a set of memory objects:

mo = (α , size, arr ) ∈ 2E×N
+×A .

However, the base address of an object is now a symbolic value
α ∈ E and not a concrete one. We enforce the non-overlapping
property of different objects using hidden concrete base addresses:
Whenever the program allocates a memory object, we create an
address pair which consists of two values: a symbolic one α and a
concrete value c . The concrete value c is used to ensure that the
allocated objects do not overlap in the same way that is done in the
existing model. The symbolic value α is the value that propagates
to the symbolic state.

We maintain the correlation between the symbolic addresses and
the concrete ones using address constraints (AC). These constraints,
which are distinct from the path constraints of the symbolic state,
record equalities of the form:

α = e

where e is an expression over the hidden concrete addresses and
the symbolic ones.

Note that the address constraints are not part of the path con-
straints, they are only used when we construct a query for the
solver. Under this model, the address expressions stored in the sym-
bolic state are symbolic, and any other expression might depend on
these symbolic values, which are not constrained under the path
constraints. Therefore, we substitute the address constraints before
passing an expression e to the solver, that is: e[αi/ei ] (for each
address constraint αi = ei ).

Remark. Another way to achieve the non-overlapping property
is to extend the path constraints of the symbolic state with appro-
priate constraints regarding the values of the base addresses. If we
have memory objects (α1, size1, arr1), ..., (αn , sizen , arrn ), then we
could have used the following constraints:

∀i , j . [αi ,αi + sizei ) ∩ [α j ,α j + sizej ) = ∅.

However, we found this approach not scalable, as it adds additional
constraints and symbolic values (depending on the number of ob-
jects in the symbolic state), making constraint solving significantly
harder.

To illustrate our new addressing model, consider the program
from Figure 2. When the array of pointers is allocated at line 2, we
do the following: Assuming that a pointer size is 8 bytes, we first
create a new memory objectmo1 = (α1, 16, arr1) with an address
pair (α1, c1), and addmo1 to the address space. Then, we add a new
address constraint α1 = c1, and the symbolic value α1 is assigned to
be the value of the local variable array. Note that c1 is chosen such
that the addresses in the range [c1, c1 + 16) are distinct from those
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1 #define N (2)

2 char **array = calloc(N, sizeof(char *));

3 for (unsigned int i = 0; i < N; i++)

4 array[i] = calloc(256, 1);

5
6 unsigned int i; // symbolic, i < 2

7 unsigned int j; // symbolic, j < 100

8 if (array[i][j] == 1)

9 // do something...

Figure 2: A simple programallocating a twodimensionalma-
trix using an array of pointers and multiple buffers.

of any already allocated object. If the memory objects allocated
at line 4 are mo2 and mo3 with the corresponding address pairs
(α2, c2) and (α3, c3), then before executing line 8 the address space
consists of:

{mo1,mo2,mo3}
and the address constraints are:

{α1 = c1,α2 = c2,α3 = c3}

At line 8, where array is accessed with symbolic offset i , the value
of a[i] is a select expression:

select (store (store (arr1, 0,α2), 1,α3), i )

This symbolic pointer expression has to be resolved using the solver,
but instead of passing the above expression we substitute our ad-
dress constraints and the actual expression passed to the solver
is:

select (store (store (arr1, 0, c2), 1, c3), i )
With this model, objects can be now seamlessly relocated. Sup-

pose that after the loop at line 5 we want to relocate the memory
objectmo2 to a new address. This is achieved by the following steps:
First, we allocate a new memory objectmo4 with an address pair
(α4, c4) of the same size asmo2, and copy the contents of mo2 to
mo4. Second, we update the address space by removing mo2 and
adding mo4. Finally, we modify the address constraint α2 = c2 to
be α2 = c4. After the relocation, the expression obtained by the
symbolic read a[i] at line 8 is the same as before:

select (store (store (arr1, 0,α2), 1,α3), i )

But now, the substituted expression that will be passed to the solver
is different:

select (store (store (arr1, 0, c4), 1, c3), i )

In this addressing model the address values observable by the
symbolic state are always symbolic, but those passed to the solver
are concrete, which allows efficient constraint solving. Using this
addressing model we can perform dynamically two operations
which are not possible with the existing model: merging multiple
objects into one segment (Section 2.3), and splitting an object to
multiple objects (Section 2.4).

Limitations. Our symbolic addressing model is applicable for
well-behaved programs where the actual address of a memory ob-
ject should not affect the behavior of the program. In particular, the
program should only compare pointers of different objects for equal-
ity, as required by the C standard, and avoid using fixed addresses
besides null.

𝛼2

𝛼3

after mergingbefore merging

𝒎𝒐𝟐

array:

𝒎𝒐𝟒

array:

𝒎𝒐𝟑

𝛼2

𝛼3

Figure 3: Merging multiple objects into a single segment.

2.3 Application: Inter-object Partitioning
In this section, we show how the relocatable addressing model
allows to dynamically merge the representations of several objects
allocated by the program into a single memory object, thus reducing
the cost of handling symbolic pointers.

2.3.1 Segmented Memory Model. Symbolic pointers present a par-
ticular challenge for SE [4, 20]. Since symbolic pointers can poten-
tially refer to multiple memory objects, the SE engine first needs to
resolve the pointer expression, that is, find all the memory objects
to which the pointer could refer to, such that the right SMT arrays
can be referenced. The case of multiple resolution, where we have
more than one resolved object, is especially challenging, and several
approaches have been proposed in the past.

In the forking model [3, 27], the current symbolic state is forked
for each of the resolved objects, and each forked state constrains
the symbolic pointer expression to the range of the resolved object.
This approach is relatively efficient in terms of constraint solving,
but may contribute to path explosion due to forking. The merging
model [15, 33] uses disjunction to constrain the symbolic pointer
to one of the resolved objects. This way, forks are avoided but the
path constraints become more complex due to the introduction of
disjunctions. Similarly to the merging model, the segmented mem-
ory model [20] also proposes an approach which avoids forking, but
here this is achieved by using array theory rather than disjunction.
In this model, the memory is split into segments, such that each
symbolic pointer refers to objects in a single segment. The memory
is partitioned into segments using conservative pointer analysis.
The points-to set of a pointer is a set of abstract memory objects
which are identified by their static allocation site (line). Two inter-
secting points-to sets are merged into one points-to set, until all
the points-to sets are disjoint. For each of the (disjoint) points-to
sets a new memory segment is created, such that all the memory
objects associated with that points-to set will be allocated in that
segment.

With this approach, objects pointed by any pointer (symbolic or
concrete) are guaranteed to reside in exactly one segment, which
makes the process of symbolic pointer resolution much more effi-
cient. However, this approach is limited by the precision of pointer
analysis, and the computed segments might be too large for com-
plex programs. A larger segment results in a larger SMT array, thus
affecting the performance of the solver.
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2.3.2 Dynamically Segmented Memory Model. Instead of conserva-
tively computing the segments ahead of time using pointer analysis,
we propose a dynamic memory partitioning strategy that creates
the segments on the fly using our relocatable addressing model.
When we encounter a symbolic pointer that refers to multiple mem-
ory objectsmo1, ...,mon where:

moi = (αi , sizei , arri )

we create a new segment (a memory object of an appropriate size),
and relocate all these objects to this segment. First, we allocate a
new segment (αs , sizes , arrs ) with an address pair (αs , cs ), such
that sizes =

∑
i sizei . Then we copy the contents of the memory

objectsmo1, ...,mon into that segment, such that after the copy it
holds that:

∀0 ≤ j < sizei . select (arrs ,oi + j ) = select (arri , j )

where oi =
∑
k<i

sizek

Finally, we remove from the address space the memory objects
mo1, ...,mon , and the address constraints on αi are updated to:

αi = αs + oi

In the example from Figure 2, the symbolic pointer obtained
by reading a[i] (at line 8) is resolved to two memory objects:
mo2 = (α2, 256, arr2) andmo3 = (α3, 256, arr3). We then create a
new segmentmo4 = (α4, 512, arr4) with the address pair (α4, c4),
addmo4 to the address space, and add the address constraintα4 = c4.
Then we remove from the address spacemo2 andmo3, and update
the address constraints of α2 and α3 to:

α2 = α4, α3 = α4 + 256

After this transformation, our symbolic pointer is resolved to only
one object (mo4), thus reducing the number of forks. Note that with
this approach, the segments that we dynamically create don’t con-
tain redundant objects, those that are not pointed by the symbolic
pointer. We merge only the objects that were resolved using the
solver, thus reducing the size of the created segments.

The above transformation is graphically depicted in Figure 3.
The state of the memory is shown before and after the merge
transformation. Note that the contents of the object array are not
affected by this transformation.

2.3.3 Optimizations. The segments created using our approach are
guaranteed to be smaller, compared to the segments computed by
pointer analyses based partition. However, the resolution process
with our approach is more expensive, as a symbolic pointer still
may point to multiple objects, before those are merged into one
segment. The array theory constraints which are added due to
the merging of objects are harder to solve, which makes constraint
solving and symbolic pointer resolution more expensive. To address
these issues, we propose several optimizations.

Context Based Resolution. Resolving symbolic pointers is a chal-
lenging task, as a symbolic pointer may refer to multiple memory
objects. To determine these memory objects, symbolic executors
(such as KLEE) scan the entire memory, and check for each scanned
memory object an appropriate range condition using the solver. The
dependence on the solver makes this process expensive, especially
when the number of memory objects is high.

We observed that the resolution process can be optimized when
using a context abstraction of the allocated objects. When a mem-
ory object is allocated, its k-context abstraction is obtained by the
calling instructions of the last k stack frames, including the current
instruction. Once we learn the contexts of the resolved objects at a
given location (instruction), we can use that information to speed
up the resolution process at the next time we have a resolution
at that location. When objects are scanned during the resolution
process, an object whose context is not one of the recorded contexts
will be skipped, that is, a query will not be sent to the solver. Once
the resolved objects are merged into a new segment (as described in
Section 2.3.2), we can check the completeness of the resolution pro-
cess with a single solver query that checks if the symbolic pointer
must point to the newly created segment. If that’s not the case, we
fallback to the default resolution mechanism. Note that applying
context-based resolution in the forking model is not beneficial, as
checking completeness requires scanning the entire memory.

Reusing Segments. Modern symbolic executors use various heuris-
tics for optimizing constraint solving. One of the key heuristics
used in KLEE is query caching [3, 4], which associates the query ex-
pression to the result of the query. Consider again the program from
Figure 2, and suppose that two symbolic states execute the branch
instruction at line 8. With the dynamically segmented memory
model, when the first state executes the branch, the resolved mem-
ory objects pointed by a[i][j] are merged to a new segment. Sup-
pose that the memory object allocated at line 2 is (α1, size1, arr1),
and the created segment is (α2, 512, arr2) with the address pair
(α2, c2). In that case, the expression corresponding to the branch
condition a[i][j] == 1 after substituting the address constraints
will be:

select (arr2, (select (arr1, i ) + j ) − c2) = 1
Similarly, if in the second symbolic state the created segment is
(α3, 512, arr3), then the expression for the same condition will be:

select (arr3, (select (arr1, i ) + j ) − c3) = 1

The query caching is perform syntactically on the expression level,
therefore the second symbolic state will have a cache miss for this
query and will invoke the solver.

To handle this issue we attempt to reuse previously allocated
segments. If at a program location L, a symbolic pointer was re-
solved to memory objects {moi } that were merged to a segment
(αs , sizes , arrs ) whose address pair is (αs , cs ), then we record the
mapping between the tuples (L, {moi }) and (cs , arrs ). If later an-
other symbolic state resolves a symbolic pointer at program location
L to the same set of memory objects {moi }, the created segment
will be (α ′s , sizes , arrs ) with the address pair (α ′s , cs ).

This way, when the second symbolic state performs the merge
at line 8, its address pair will be (α3, c2), and its SMT array will
be arr2. Therefore, the expression of the branch condition will be
equal to that of the first symbolic state, which will result in a cache
hit.

2.4 Application: Intra-object Partitioning
In this section, we show how the relocatable addressing model can
dynamically transform the memory state such that a single object
allocated by the program can be represented by several adjacent
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Figure 4: Splitting an object into adjacent smaller objects.

smaller memory objects, thus reducing the size of the SMT arrays
and consequently the cost of constraint solving.

When a memory object is accessed with a symbolic offset, the
resulting values are translated using array theory to select and
store expressions. Solving array theory constraints is usually much
harder than regular bit-vector constraints, especially when the
arrays are big. During symbolic execution, we might have many
such queries, which then results in a significant slowdown.

To make constraint solving more efficient, we attempt to reduce
the size of big SMT arrays by dynamically splitting their corre-
sponding memory objects into smaller ones. We split only memory
objects which were accessed with a symbolic offset, as array theory
will not be used for memory objects that are accessed only with
concrete offsets.

The split operation on a memory objectmo = (α , size, arr ) with
an address pair (α , c ) works as follows: We allocate n new mem-
ory objectsmo1, ...,mon with address pairs (αi , ci ), such that their
addresses are consecutive:

∀1 ≤ i < n. ci+1 = ci + sizei

and add the address constraints {αi = ci }. We initialize the contents
of each memory objectmoi = (αi , sizei , arri ) usingmo such that:

∀0 ≤ j < sizei . select (arri , j ) = select (arr,oi + j )

where oi =
∑
k<i

sizek

Then we remove from the address space the memory objectmo, and
update the address constraint on α to α = α1, the symbolic address
of the first split memory object. The sizes {sizei } of the memory
objects {moi } are determined according to a given partitioning
strategy.

Consider the symbolic execution of the program from Figure 2
under the forking model. Assuming that the memory object allo-
cated at line 2 is (α1, 16, arr1), the expression of the pointer from
which the value a[i][j] is read is:

select (arr1, i ) + j

This symbolic pointer is resolved to the two objects allocated at
line 4, namelymo2 andmo3, and the symbolic state is forked. If we
continue the execution with the symbolic state which constrains
the symbolic pointer to the memory objectmo2 = (α2, 256, arr2),
as depicted at the upper part of Figure 4, then the value of a[i][j]

would be:

select (arr2, select (arr1, i ) + j − α2)

Since this value is read frommo2 with a symbolic offset, we would
like to splitmo2 . Suppose that we choose a partitioning strategy
that splits a given memory object into n memory objects of equal
size. Then for n = 4 we splitmo2 into 4 objects:mo4,mo5,mo6,mo7,
as depicted in the lower part of Figure 4. After the split, we re-
execute the load instruction that references the previous symbolic
pointer, but now it is resolved to two objects,mo4 andmo5, due to
the constraint j < 100.

Assuming thatmo4 = (α4, size4, arr4), in the first newly forked
state the expression of the value a[i][j] is now:

select (arr4, select (arr1, i ) + j − α4)

Due to the split we explore an additional path, the one that con-
strains the symbolic pointer tomo5, but we get smaller SMT arrays:
arr4 and arr5. The size of arr4 is 64, which is four times smaller
than the size of arr2, which makes the new expression much easier
to solve.

The effect of the split operation depends on the partitioning
strategy: For smaller split objects the SMT arrays are smaller, but
the number of resolved objects is higher, and therefore the number
of forks is higher as well. For bigger split objects the number of
resolved objects and forks is lower, but the resulting SMT arrays
are consequently bigger. The number of split objects also affects
the resolution process which works by scanning the entire memory.
We investigate this trade-off in Section 4.3.

3 IMPLEMENTATION
We implemented our addressing model on top of the KLEE symbolic
execution engine [3], configured with LLVM 7.0.0 and STP 2.3.3.
We modified KLEE’s allocation API to return symbolic addresses
instead of concrete ones, and extended the symbolic state with the
address constraints. Our addressing model is actually implemented
as a mixed concrete-symbolic one, that is, we allow allocation of
memory objects with concrete addresses as well. Obviously, the
applications described in Sections 2.3 and 2.4 can’t be applied to
such memory objects.

In our implementation, symbolic addresses can be assigned to
both stack and heap memory objects. By default, we don’t create
symbolic addresses for stack variables, as they are rarely involved
in multiple resolutions or array theory constraints. From technical
reasons we currently don’t support global variables with symbolic
addresses, but this can be solved by automatically rewriting the
program such that global variables would be allocated on the heap
upon the program’s startup.

When a memory object is split, we need to ensure that reads and
writes to primitive fields are performed within a single memory
object. We assume that struct fields are aligned to 8 bytes, so the
size of each split object must be aligned to 8 bytes as well.

4 EVALUATION
We perform several experiments in our evaluation: In Section 4.1,
we show the correctness of our addressing model. In Sections 4.2
and 4.3 respectively, we show the benefits of our addressing model
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Table 1: The benchmarks used throughout the evaluation,
with their versions and number of source code lines (SLOC).

Benchmark Version SLOC

m4 1.4.18 80K
make 4.2 28K
sqlite 3.21 127K
apr 1.6.3 60K
gas 2.31.1 266K
libxml2 2.9.8 197K
coreutils 8.31 188K

when applied in the context of inter-object partitioning (dynamic
merging) and intra-object partitioning (dynamic splitting).

Experimental Setup. We performed our experiments on an a ma-
chine running Ubuntu 16.04, equipped with an Intel i7-6700 proces-
sor (8 cores) and 32GB of RAM.

Benchmarks. The benchmarks used in our evaluation are listed
in Table 1. GNU m44 is a macro processor included in most Unix-
based systems. GNU Make5 is a tool which controls the generation
of executables and other non-source files, also widely used in Unix-
based systems. SQLite6 is one of the most popular SQL database
libraries in the world. Apache Portable Runtime7, (APR) is a library
used by the Apache HTTP server that provides cross-platform
functionality for memory allocation, file operations, containers,
and networking. GNU Assembler8, commonly known as gas, is the
assembler used by the GNU project, and is the default back-end of
GCC. The libxml29 library is a XML parser and toolkit developed
for the Gnome project. GNU Coreutils10 is a collection of utilities
for file, text, and shell manipulation.

4.1 Correctness
In this experiment, we empirically validate the correctness of our
addressing model. To do so, we check that the existing addressing
model (vanilla KLEE) and our model are consistent in terms of path
exploration. Here we use our addressing model without applying
the merging (Section 2.3) and splitting (Section 2.4) operations,
therefore the number of explored paths in both models is expected
to be identical. For this experiment, we used the programs listed in
Table 1, where in coreutils we selected 15 programs which behave
deterministically across multiple runs.

For each program, we proceed with the following evaluation
process: First, we run KLEE for roughly one hour, and record the
number of executed instructions. Then, we run KLEE again up to
the number of recorded instructions, with both its default address-
ing model and our addressing model. Finally, we validate that the

4https://www.gnu.org/software/m4/
5https://www.gnu.org/software/make/
6https://www.sqlite.org/
7https://apr.apache.org/
8https://sourceware.org/binutils/docs/as/
9http://www.xmlsoft.org/
10https://www.gnu.org/software/coreutils/
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Figure 5: The termination times in seconds for each pro-
gram with the existing addressing model (Vanilla) and our
addressing model (Our Model).

number of paths explored by both addressing models is identical.
To enforce determinism, we ran each program with the DFS search
heuristic, using the deterministic memory allocator.

Our experiments confirmed that the number of explored paths
with both addressing models is indeed the same. We also measured
the runtime overhead induced by our addressing model, which
comes from substituting expressions and maintaining additional
symbolic values for address expressions, as described in Section 2.2.
Figure 5 shows the termination time (in seconds) for each program
with the two addressing models. For the programs we tested, the
maximum runtime overhead was 16% (in cat from coreutils), and
the average runtime overhead was 4%.

4.2 Inter-object Partitioning
4.2.1 Dynamically Segmented Memory Model. In this experiment
we compare the performance of our dynamically segmented mem-
ory model (DSMM) with the segmented memory model (SMM)
proposed in [20], and the forking model (FMM) used in vanilla
KLEE. We perform the same experiment as in [20] (Figures 6,7,8,9
from the original paper). The benchmarks of this experiment are:
m4, make, sqlite, and apr11. These programs create symbolic point-
ers which trigger multiple resolutions, as they all use hash tables
with symbolic keys. Programs in which symbolic pointers with mul-
tiple resolutions are few (gas) or absent (libxml2, and coreutils) are
not used in this experiment. The impact of our addressing model on
the runtime overhead for these programs is discussed in Section 4.1.

We run each program with a timeout of 24 hours using three
search heuristics (DFS, BFS and KLEE’s default search heuristic)
with the deterministic memory allocator, and measure the termi-
nation time and the memory consumption with all three memory
models. Our dynamically segmented memory model is run with
several optimizations, whose impact is investigated in Section 4.2.2.

11 In sqlite we disabled the counter-example caching query optimization, as it lead to
inconsistent termination times. For SMM, the result was timeout with and without this
optimization. Note that this optimization is different from the query caching discussed
in Section 2.3.3.

https://www.gnu.org/software/m4/
https://www.gnu.org/software/make/
https://www.sqlite.org/
https://apr.apache.org/
https://sourceware.org/binutils/docs/as/
http://www.xmlsoft.org/
https://www.gnu.org/software/coreutils/


ISSTA ’20, July 18–22, 2020, Virtual Event, USA David Trabish and Noam Rinetzky

Table 2: Maximum segment size in bytes.

Program Max. Size

SMM DSMM

m4 2753 1008
make 7574 1776
sqlite 17604 528
apr 8316 240

Table 3: Termination time in hh:mm or TO (timeout) and
memory usage in GB or OOM (out-of-memory) with differ-
ent memory models: FMM, SMM and DSMM.

Search
Time Memory

FMM SMM DSMM FMM SMM DSMM

m4

DFS 21:03 01:04 00:26 0.1 0.2 0.3
BFS 09:32 01:04 00:30 OOM 0.3 0.4
Default 09:41 01:10 00:35 OOM 0.5 0.5

make

DFS 06:35 22:49 03:35 1.6 0.8 0.5
BFS 06:33 23:03 03:34 1.6 0.8 0.6
Default 07:27 23:04 03:38 1.5 0.8 0.4

sqlite

DFS 00:18 TO 01:36 0.2 0.8 0.4
BFS 00:18 TO 01:34 0.3 0.7 0.4
Default 00:18 TO 01:36 0.2 0.7 0.5

apr

DFS 01:01 00:07 00:19 0.1 0.1 0.1
BFS 00:59 00:07 00:19 0.1 0.1 0.1
Default 00:57 00:07 00:19 0.1 0.1 0.1

Table 2 shows the maximum segment sizes for both SMM and
DSMM. The maximum segment size created using our approach is
reduced on average by 83%, where the reduction is 63% inm4, 77% in
make, 97% in sqlite, and 97% in apr . The sizes of the created segments
are crucial for the performance, as the sizes of their corresponding
SMT arrays affect the complexity of constraint solving.

Table 3 shows for each benchmark and search heuristic the
termination time and the memory consumption obtained with the
three memorymodels. We first discuss the performance comparison
between SMM and DSMM, and then discuss the performance of
FMM compared to the segmentation-based memory models (SMM
and DSMM).

In m4, our approach achieves an average speedup of 2.2× com-
pared to the segmented memory model, with a slightly higher
memory usage. Inmake, our approach achieves an average speedup
of 6.3× compared to the segmentedmemorymodel, and the memory
usage is roughly the same. In sqlite, the segmented memory model
doesn’t terminate before the 24 hours time limit (for all search
heuristics), which results in an average speedup of at least 14.2× for
our approach. The memory usage is roughly the same with both
approaches in this case. In apr , the memory usage is equally low
in both approaches, but it terms of termination time, this is the
only case where our approach performs worse. As was mentioned

above, the maximum segment size with our approach is signifi-
cantly smaller, but the segmented memory model is still 2.3× faster
on overage. The program allocates several small objects using libc’s
standard allocation API, and some other objects using a custom
pool allocator, that internally uses an array of 8192 bytes. During
the symbolic execution of the program, the SMT array associated
with the big array (of the pool allocator) is involved in the queries,
which slows down the exploration. In the case of the segmented
memorymodel, the big array and the other small objects are merged
into one segment. With our approach, some of the small objects are
dynamically merged into one segment, but the big array remains
untouched. In both approaches, we have a big array of roughly
the same size which is involved in the constraints, thus slowing
down the solver. The advantage of our approach is having smaller
segments, but symbolic pointers are still needed to be resolved
(possibly to multiple memory objects), which leads to higher reso-
lution time. In the segmented memory model a symbolic pointer
is guaranteed to point to one segment at most, so the resolution
process is less costly. In this case, the resolution process with our
approach is indeed higher, as each resolution query involves the big
array that was mentioned before. Actually, the resolution process
takes roughly 50% of the total execution time, which explains the
extra time required for our approach to terminate.

When comparing the performance of FMMwith the segmentation-
based memory models (SMM and DSMM), the results are mixed.
In m4 and apr , FMM performs significantly slower with all search
heuristics than other memory models. The memory usage in apr is
basically identical across all memory models, but inm4 the memory
usage with FMM reaches the limit (with BFS and Default), which
leads to an incomplete exploration and early termination. In make,
FMM performs faster than SMM but slower than DSMM, and its
memory usage is higher compared to other memory models. In
sqlite, FMM outperforms SMM and DSMM in terms of termination
time and memory usage.

4.2.2 Optimizations. Here we further investigate the impact of the
optimizations discussed in Section 2.3.3. We use the same bench-
marks as in Section 4.2.1, and run each of them with the DFS search
heuristic, using the deterministic memory allocator.

Context-Based Resolution. To understand how a given context
abstraction affects the process of symbolic pointer resolution, we
examine the number of resolution queries (those which are created
during a resolution). We evaluate the default resolution mechanism
which scans the entire memory, and our context-based resolution
with the k-context abstraction which takes into account the last k
calling instructions from the stack trace of a given allocation site,
including the current instruction.

Table 4 shows the number of resolution queries in different
modes: default resolution and context-based resolution with 0 ≤
k ≤ 4. The largest reduction occurs when k = 4, where the number
of queries is decreased by 44% in m4, 71% in make, 82% in sqlite,
and 2% in apr . We can also see that as k increases, the number
of resolution queries (non-strictly) decreases. The impact of k on
the reduction rate varies across benchmarks: In make and m4 we
have a significant reduction for k = 0, 1, but increasing k further
does not result in a significant improvement. In sqlite a reduction
of 25% is obtained already with k = 0, and increasing k further
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Table 4: The number of resolution queries with different
context abstractions.

Program Default K-Context
0 1 2 3 4

m4 12050 11434 6920 6920 6808 6808

make 8104 2632 2365 2365 2365 2365

sqlite 9134 6816 6816 3320 3320 1668

apr 96 94 94 94 94 94

to k = 2, 4 results in a reduction of 64% and 82%, respectively.
Compared to other benchmarks, the number of created memory
objects in apr is relatively small, so the resolution process with the
default mechanism is almost optimal. The number of resolution
queries is reduced by only two queries for k = 0, and using higher
values does not give any better results.

Columns None and Opt1 of Table 5 show the termination time
with the default resolution mechanism and with context-based
resolution (for k = 4). In m4, make, and sqlite, the termination time
was reduced by 26%, 13%, and 62% respectively. In apr , the number
of reduced resolution queries was minor, therefore the termination
time was not affected. Note that the reduction in termination time
depends not only on the number of reduced queries, but also on
the relative proportion of resolution time: If the resolution time
is already low, then reducing the number of resolution queries is
likely to result in a minor improvement. When the resolution time
is high, a significant speedup can be achieved even with a minor
reduction in the number of resolution queries.

In general, note that using the highest value for k (or a full-
context abstraction with k = ∞) is not guaranteed to be beneficial:
If the value of k is too high, our context-based resolution might
skip too many memory objects, which will result in an incomplete
resolution.

Reusing Segments. The reusing segments optimization attempts
to achieve speedup by improving the solver query caching, that is,
reducing the number of solver queries which are actually passed to
the SMT solver.

The impact of reusing segments can be seen in columns None
and Opt2 of Table 5. In m4 and apr , the termination time was
reduced by 85% and 17% respectively, while in make and sqlite
the reduction was relatively small with 3% and 8% respectively.
As was mentioned before, the benchmarks in this experiment use
hash tables with buckets, which are typically implemented using
an array of pointers. In the case of m4 and apr , the hash tables are
initialized at startup, and are not modified after that. Therefore,
an SMT array that corresponds to an array of pointers is identical
for all the symbolic states, which allows efficient caching when
segments are reused. In the case of make and sqlite, the hash tables
are modified after the initialization, so when different states update
a hash table by adding a new element, the corresponding SMT
arrays are different as well, which makes the reuse mechanism less
efficient. To mitigate these issues, one can try to reuse addresses
for memory objects in general, not only segments. We leave this
direction for future research.

Table 5: Termination time in hh:mm in different modes:
None: without any optimizations, Opt1: with context-based
resolution (fork = 4),Opt2: with reusing segments, andBoth:
with both optimizations.

Program Termination Time
None Opt1 Opt2 Both

m4 03:34 02:37 00:33 00:26

make 04:14 03:42 04:06 03:35

sqlite 04:16 01:37 03:58 01:36

apr 00:23 00:23 00:19 00:19

Table 6: Maximum size of split objects.

Program Size

m4 4072
make 8192
sqlite 328
apr 8192
gas 524411
libxml2 4096

4.3 Intra-object Partitioning
In this experiment, we investigate the impact of splitting arrays
on the termination time and the number of explored paths, in
programs that create array theory constraints with big arrays. For
each program we compare the results obtained by vanilla KLEE
and the splitting approach with different partitioning strategies.
When the splitting approach is used with a partitioning strategy
Pn, a memory object is split into smaller memory objects of size n.
We use a split threshold of 300 bytes, that is, we split only memory
objects whose size is bigger than that given threshold. We use the
DFS search heuristic and the deterministic memory allocator.

The benchmarks in this experiment are:m4,make, sqlite, apr , gas,
and libxml2. Similarly to the experiments in Section 4.2, we achieve
termination by running these programs with a partially symbolic
input, except for libxml2 which is run with a fully symbolic input. In
Section 4.2, the programsm4 andmake (whichwere taken from [20])
were runwith decreased sizes for some of the arrays: Inm4, the hash
table size was decreased using one of the program’s command line
flags (-H), and inmake some of the arrays were manually patched to
have smaller sizes. In this experiment we restore the default array
sizes, in order to test the splitting approach with arrays which are
big enough.

Table 7 shows the termination time and the number of paths
with both vanilla KLEE and our splitting approach (with different
partitioning strategies). In terms of termination time, the speedup of
the splitting approach relative to vanilla KLEE varies between 6.0×-
13.4× in m4, 1.2×-17.9× in make, 0.9×-4.0× in sqlite, 13.3×-132.1×
in apr , 33.6×-43.8× in gas, and 1.0×-2.5× in libxml2. Nevertheless,
there were two cases where our approach performed worse: In
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sqlite, the size of the split object is 328 bytes, therefore using P512
affects neither the memory objects nor the number of explored
paths, with the termination time being higher by 4% due to the
overhead incurred by our addressing model. Running libxml2 with
P32 resulted in a slightly higher termination time, mainly due to
the increased number of explored paths.

Table 6 shows the maximum size of a split object for each bench-
mark. The sizes vary between roughly 500KB in gas and only 328
bytes in sqlite, which shows that the splitting approach can be
successfully applied with both big arrays and relatively small ones.

The partitioning strategy used in the splitting approach directly
affects the termination time and the number of explored paths.
When an object is split according to some partitioning strategy,
a more refined partition will (non-strictly) increase the number
of memory objects that a symbolic pointer can point to. Since we
are in the forking model, when we decrease n, that is refine the
partition, the number of resolved memory objects with Pn increases
together with the number of explored paths. In addition, when
the partitioning is more refined, the number of memory objects
grows, which may result in a slower symbolic pointer resolution.
Nevertheless, using a more refined partitioning creates smaller
SMT arrays, which makes constraint solving easier. This tradeoff
between the complexity of the constraints on one side, and the
number of paths and the resolution time on the other, eventually
determines the termination time with a given partitioning strategy.

When trying to understand the impact of a given partitioning
strategy, we observed two main patterns. When n is decreased
in sqlite and apr , the overhead of forks and resolution remains
relatively low and SMT arrays also become smaller, which results
in better overall performance. In other benchmarks (m4, make, gas,
and libxml2), decreasing n toward small values (32) results in a
slowdown due to an increased number of explored paths. In make
and m4, increasing n too much toward high values (512) results in
a slowdown as well, due to the growing complexity of constraints
over bigger SMT arrays. The sweet spot value for n lies somewhere
between 64 and 256.

5 RELATEDWORK
Coppa et al. [10] model the symbolic memory as a set of tuples,
where each tuple associates an address expression to a value ex-
pression, along with a timestamp, and a condition. When a write is
performed, the memory is updated with a new tuple containing the
corresponding address and value expressions. When a read is per-
formed, the memory is scanned to determine the tuples that match
the given address expression. The read value is then expressed
using an if-then-else expression, which is built using the matching
tuples. This approach attempts to improve the merging memory
model used in ANGR [33], by avoiding concretizations of symbolic
pointers when they are encountered in reads or writes. In our work,
accessing memory objects with symbolic offsets is handled using
array theory. The segmented memory model, in its static [20] and
dynamic forms, is similar in spirit to the merging approach, but
here instead of using if-then-else expressions or disjunctions, we
compute some memory partitioning while using array theory. Our
splitting approach attempts to improve the constraint solving of
array theory constraints which are not used in [10].

Table 7: Termination time in hh:mm:ss and number of ex-
plored path with vanilla KLEE and different splitting strate-
gies.

Program Mode Time Paths

m4 Vanilla 00:39:46 82
P512 00:06:40 82
P256 00:02:58 101
P128 00:03:16 145
P64 00:03:50 257
P32 00:05:08 485

make Vanilla 09:04:13 3386
P512 01:13:50 4488
P256 00:30:26 6088
P128 00:39:47 10136
P64 01:53:15 21304
P32 07:44:1912 55928

sqlite Vanilla 00:18:38 147
P512 00:19:26 147
P256 00:15:21 213
P128 00:09:46 259
P64 00:07:26 355
P32 00:04:38 465

apr Vanilla 01:01:38 961
P512 00:04:39 1024
P256 00:02:21 1225
P128 00:01:16 1444
P64 00:00:47 1849
P32 00:00:28 2025

gas Vanilla 05:18:26 5
P512 00:07:16 5
P256 00:07:25 5
P128 00:07:43 5
P64 00:08:23 5
P32 00:09:29 5

libxml2 Vanilla 01:22:27 4413
P512 00:33:26 5003
P256 00:33:38 5230
P128 00:39:13 5821
P64 00:59:06 6885
P32 01:23:00 8718

The idea of modeling addresses not as constant values was dis-
cussed in past work. For example, Hajdu et al. [17] model address
values in smart contracts as un-interpreted symbols as in this con-
text addresses can be only queried for equivalence. We allow for
arbitrary queries over symbolic addresses.

The idea of using memory partitioning for improving program
analysis has been explored before. In the context of bounded model
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checking, partitioned models have been used based on various com-
plementary analyses such as points-to analysis [1, 36, 37], data struc-
ture analysis (DSA) [21], and type based analysis [2, 9]. CBMC [8]
and ESBMC [11] also use points-to analysis to refine their memory
models. SeaHorn [16] uses a context-insensitive variant of DSA [21].
The memory partitioning used in prior work is computed ahead
of time, while our dynamically segmented memory model doesn’t
require additional pre-computations, and enables a path-specific
memory partitioning during runtime, thus resulting in a more ac-
curate partitioning.

Our context-based resolution uses the last k call sites to learn
the contexts of resolved objects in order to accelerate the process
of symbolic pointer resolution. The usage of call-site abstraction is
inspired by context-sensitivity in program analysis [32].

Scaling constraint solving is a well known challenge in symbolic
execution [5, 6]. Prior work has used different optimizations such
as arithmetic transformations [4, 31], caching query results [3, 4],
caching counter examples [3, 38, 39], splitting constraints into in-
dependent sets [4], multiple solvers support [26], interval-based
solving [13], and even fuzzing-based solving [22]. Perry et al [28]
focus on reducing the cost of array theory constraints using sev-
eral semantics-preserving transformations. These transformations
attempt to eliminate array constraints as much as possible by re-
placing them with constraints over their indices and values. The
approaches mentioned above are orthogonal to our splitting ap-
proach, with which they could be combined.

6 CONCLUSION AND FUTUREWORK
We presented a novel addressing model where the underlying rep-
resentations of allocated objects can be dynamically modified, by
using symbolic addresses rather than concrete ones. We showed
how this model can improve the existing segmented memory model,
and reduce the cost of solving array theory constraints.

We presented our addressing model, and its two applications,
assuming the usage of array theory (as is the case in KLEE). In
general, the merging approach discussed in Section 2.3 does not
require using array theory, and regardless of the fact the one of the
optimizations (2.3.3) is array theory specific, we believe that the
core idea can be applied to other symbolic executors as well.

Our work opens the opportunity for different research directions:
In our dynamic intra-object partitioning, we used a rather simple
partitioning strategy. Automatically determining and customizing
the partitioning strategy for a given object in a program might
further improve performance. Another challenge is predictingwhen
a splitting or merging transformation is likely to payoff. In addition,
these approaches could be applied simultaneously.
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12In this configuration, we use the standard (libc) memory allocator and not the
deterministic one used in all other experiments as the latter does not reuse addresses
and ran out of space during the experiment.
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