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Abstract

Symbolic execution (SE) is a program analysis technique that systematically explores

paths in the program while checking their feasibility using an SMT solver. SE has

been used successfully in many applications, both academic and industrial, but still

suffers from three main challenges: path explosion, expensive constraint solving, and

incompleteness. The memory model is a key component in SE, as it determines the

representation of the address space and the memory objects. This, in turn, affects path

exploration and constraint encoding, which are directly related to the aforementioned

challenges. In this thesis, we propose several novel memory models, and show how they

help to scale SE.

First, we propose a memory model which uses symbolic base addresses instead of the

standardly-used concrete base addresses. This memory model allows us to dynamically

modify the layout of address spaces and the representation of memory objects. We

use this capability to achieve faster solving of array-theory constraints and to reduce

forking, and thus mitigate path explosion, when handling symbolic pointers.

Another advantage of that memory model is the ability to distinguish between

address expressions and non-address expressions. We exploit this to perform efficient

query caching of queries that depend on address expressions.

Then, we propose a memory model where the size of a memory object can be

symbolic, and not only concrete. To avoid arbitrarily large memory objects, which

require unbounded memory, the size of memory objects is limited by a user-specified

capacity. This memory model allows us to perform a more complete analysis, but it

also increases the number of forks. To address this, we apply an optimized form of state

merging when those additional forks are introduced.

The effectiveness of the state merging approach mentioned above might be limited

in the presence of complex disjunctions and if-then-else expressions, especially when

many symbolic states are being merged. To address this, we propose a novel state

merging technique which uses quantified encoding instead of the standard quantifier-



free encoding. To efficiently handle the new encoding, we propose a specialized solving

procedure which takes advantage of the specific structure of our quantified constraints.

We address the limitations of SE using novel memory models, and make it thus

more scalable and complete. We implement our ideas, evaluate them on real-world

benchmarks, and find bugs. Our replication packages are freely available and contain

all the resources needed to run our experiments.
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Chapter 1

Introduction

Symbolic execution (SE) [76] is a program analysis technique that has many applications

in both academic and industrial areas, including: high-coverage test generation [38, 39,

89], bug finding [39, 66], patch testing [83, 93], automatic program repair [84, 86],

debugging [72], cross checking [42, 74], reverse engineering [40], and side-channel

analysis [34, 35, 90]. In symbolic execution, the program is executed with an

unconstrained (or a partially constrained) symbolic input, rather than with a concrete

one. Whenever the execution reaches a branch that depends on one of the symbolic

inputs, an SMT solver [49] is used to determine the feasibility of each branch side, and

the relevant paths are further explored while their paths constraints are updated with

the corresponding constraints. Once the execution of a given path completes, the SMT

solver generates a satisfying assignment using the corresponding path constraints, i.e.,

a concrete input (test case) that can be used to replay that path.

The main challenges in symbolic execution are path explosion, constraint solving,

and incompleteness [25, 37]. Path explosion relates to the challenge of navigating the

huge number of paths in real-world programs, which is usually at least exponential to

the number of static branches in the code. Constraint solving relates to the challenge

of solving the generated SMT queries, which are numerous, complex, and whose solving

usually dominates the analysis time, especially when analyzing real-world programs.

Incompleteness relates to partial exploration of the state space, which can be caused

by concretizations, i.e., when a symbolic value is constrained to a specific concrete

value. Such concretizations are performed, for example, when there are symbolic-size

allocations, i.e., when the number of allocated bytes is symbolic.

A key component in symbolic execution is the memory model as it determines

1



2 CHAPTER 1. INTRODUCTION

the representation of the address space and the memory objects (i.e., variables and

heap allocations). The representation of the address space determines the way in

which memory objects are allocated, referenced, and deallocated. The representation

of a memory object determines the encoding of its contents, its size, and the way in

which read and write operations are performed. These representation choices affect,

as explained in Section 1.1, the path exploration and the encoding of constraints, two

central aspects in symbolic execution which are directly related to the aforementioned

challenges, i.e., path explosion, constraint solving, and incompleteness.

In this thesis, we propose several approaches for modeling the memory, and show

how these approaches help to mitigate the challenges hindering symbolic execution.

In the rest of this chapter, we discuss in more detail the various aspects of

the memory model (Section 1.1) and provide a high-level description of our main

contributions (Section 1.2).
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1.1 Background

In this section, we provide sufficient technical details about symbolic execution to

understand our main contributions.

1.1.1 Symbolic Execution

In symbolic execution, we run the program with a symbolic (unconstrained or partially

constrained) input, rather than a concrete input. Similarly to concrete (or native)

execution, the symbolic state records the instruction counter and the state of the

memory (i.e., stack, heap, and global variables). However, the memory may contain

expressions over symbolic inputs instead of concrete values. In addition, the symbolic

state maintains the so-called path constraints, a set of logical formulas over the symbolic

input variables, which describe the branches that were taken during the execution.

We start the execution of the program with an initial symbolic state whose path

constraints are empty. When the execution reaches a non-branching statement (e.g.,

an assignment), we update the symbolic state following the concrete semantics of that

statement, but while operating on symbolic values rather than concrete values. When

the execution reaches a branch statement (e.g., if and switch), we examine the symbolic

expression that corresponds to the branch condition, and using an SMT solver we check

the feasibility of both branch sides w.r.t. the path constraints. If only one of the branch

sides is feasible, then we simply follow the relevant branch side. Otherwise, we fork,

i.e., create a copy of the current symbolic state, and add the relevant condition (the

branch condition or its negation) to the path constraints of the two symbolic states.

Once a given symbolic state finishes executing the program, we use an SMT solver to

obtain a satisfying model for its path constraints. This model gives us a concrete test

case (input), which can be used to replay the execution path traversed by that symbolic

state.

For example, consider the function get_sign in Figure 1.1. Assume that the

parameter x is a 32-bit integer. In concrete execution, if we want to exhaustively

test the program, i.e., cover all of its possible execution paths, then, conceptually, we

need to consider all 232 possible inputs. In contrast, in symbolic execution, we start the

execution with an initial symbolic state in which the value of x is symbolic. When we

reach the first branch at line 2, we use the SMT solver to check the feasibility of the
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1 int get_sign(int x) {
2 if (x == 0) {
3 return 0;
4 }
5
6 if (x < 0) {
7 return -1;
8 } else {
9 return 1;

10 }
11 }

Figure 1.1: A program that returns the sign of an integer input.

two branch sides: x = 0 and x ̸= 0. In this case, both branch sides are feasible, so we

fork the current symbolic state and update the path constraints in each of the symbolic

states. In the symbolic state which takes the branch at line 2, the path constraints are

x = 0, and in the other one, the path constraints are x ̸= 0. The first symbolic state

finishes the execution at line 2, and the resulting test case maps x to 0. The other

symbolic state continues the execution and reaches the second branch at line 6. Here,

the SMT solver determines the feasibility of both branch sides, and we fork again. In the

symbolic state which takes the branch at line 6, the path constraints are x ̸= 0∧x < 0,

and in the other one, the path constraints are x ̸= 0 ∧ x ≥ 0. The two symbolic states

finish the execution at lines 7 and 9, respectively. A possible test case for the symbolic

state that takes the branch at line 6 maps x to −7, and a possible test case for the

other one maps x to 3. As can be seen, when we execute this program symbolically, we

produce three test cases that cover all the possible execution paths of the program.

1.1.2 Memory Modeling

In SE engines [39, 85, 103], the address space is modeled as a linear space of memory

objects,1 where each memory object has a concrete base address, a concrete size, and

a (possibly symbolic) content. The address space must preserve the non-overlapping

property, i.e., the address interval associated with a given memory object must not

overlap with the address intervals of other memory objects.

We now discuss several aspects of the memory model, focusing on the challenges

they impose. At the end of this section, we provide a simple example illustrating these

aspects.
1The size of the address space is determined by the pointer size, which is typically 32 or 64 bit. In

our examples, we assume 32-bit pointers.
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1.1.2.1 Memory Objects

Variables and heap-allocated objects are represented using memory objects. A memory

object has a concrete base address and a concrete size, and its contents are represented

as a sequence of bytes, which is typically encoded as an SMT array [39] using array

theory [59]. We assume SMT arrays whose indices and values are 32-width and 8-width

bit-vectors, respectively, and use the standard operators select and store: select(a, i)

returns the i-th cell of a, and store(a, i, v) returns a new array obtained from a by

replacing the i-th cell with v. When we attempt to access the i-th byte of a memory

object of size s, i.e., read or write, we first need to make sure that i is a valid offset.

To do so, we generate an SMT query that encodes the fact that i ≥ s (w.r.t. the path

constraints), and check its satisfiability using the SMT solver. If the query is satisfiable,

then we found a test case leading to an out-of-bounds memory access, and report an

error. Otherwise, we can safely access the memory object with the offset i. Now, assume

that a is the SMT array that represents the contents of the memory object. When we

read the i-th byte, the read value is encoded using a select expression: select(a, i).

When we write an expression e to the i-th byte, the SMT array a is replaced with

a store expression: store(a, i, e).2 For clarity of explanations, we use the selectk(a, i)

and storek(a, i, v) operators, instead of employing the standard bit-vector concatenation

operations: selectk(a, i) reads an (8 ·k)-width value from offsets i, . . . , i+k−1 in a and

storek(a, i, v) writes an (8 · k)-width value v to these locations.

Imposed Challenges When we perform a read or write operation, we check the

memory safety of that operation by solving SMT queries, which increases the cost of

constraint solving.

1.1.2.2 Allocation

When an allocation of an object of size s occurs during symbolic execution, we add

to the address space a new memory object with a base address a and a size s. If

the allocation size s is symbolic, the common practice is to concretize it, i.e., fix it to

one of the possible concrete values that satisfy the path constraints. To preserve the

non-overlapping property of the address space, we need to make sure that the address

2SE engines that do not use array theory handle the access operations using ite (if-then-else)
expressions. Note that select and store expressions can be eliminated by using ite’s.
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interval associated with the newly allocated memory object, i.e., [a, a + s), does not

overlap with the address intervals of the existing memory objects.

Imposed Challenges The concretizations caused by allocations of symbolic size may

lead to missed execution paths, i.e., incomplete exploration. Furthermore, if the sizes of

memory objects are allowed to be an arbitrary symbolic values, then the preservation

of the non-overlapping property can be costly.

1.1.2.3 Pointer Resolution

When we need to dereference a pointer p, be it concrete or symbolic, we scan the address

space in order to find all the memory objects that might be pointed to by that pointer.

To determine if a given memory object may be pointed to by p, we generate a so-called

resolution query, an SMT query that encodes the fact that the value of p belongs to the

address interval of that memory object, and check its satisfiability. If we find a memory

object pointed to by p, then assuming that the base address of the resolved memory

object is a, we can access the desired memory location at offset p− a of the SMT array

of the memory object. Note that if p is not a concrete pointer, then it may point to

multiple memory objects. If that happens, then the common practice is to fork the

execution so that p points to only one memory object in each forked symbolic state.

Imposed Challenges Pointer resolution is performed by solving SMT queries, which

increases the cost of constraint solving. Moreover, when symbolic pointers are resolved

to multiple memory objects, the execution is forked, which amplifies path explosion.

1.1.2.4 Deallocation

When a pointer p is deallocated, for example, when free(p) is executed, we first resolve

p, and then remove all the resolved memory objects from the address space.

Imposed Challenges Deallocation requires resolving pointers, therefore, it imposes

the challenges related to pointer resolution.

1.1.2.5 Example

Consider the code in Figure 1.2. At line 1 we define the symbolic variable n, and at line 2

we reach the allocation of the array of pointers ptrs. Since the allocation size, i.e., the
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1 size_t n; // symbolic
2 char **ptrs = malloc(n * sizeof(char *));
3 for (int i = 0; i < n; i++) {
4 ptrs[i] = malloc(10);
5 }
6
7 int k; // symbolic
8 if (0 <= k && k < 2) {
9 // symbolic pointer dereference

10 char *s = ptrs[k];
11 // symbolic pointer dereference with multiple resolutions
12 s[0] = ’a’;
13 }
14
15 for (int i = 0; i < n; i++) {
16 free(ptrs[i]);
17 }
18 free(ptrs);

Figure 1.2: A simple example with memory operations.

…𝒑𝒕𝒓𝒔

𝒏 = 𝟐:

…

𝟎𝒙𝟖𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝟎𝒙𝟖𝟎𝟎𝟎𝟏𝟎𝟎𝟎 𝟎𝒙𝟖𝟎𝟎𝟎𝟐𝟎𝟎𝟎

𝒑𝒕𝒓𝒔 …

𝟎𝒙𝟖𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝟎𝒙𝟖𝟎𝟎𝟎𝟏𝟎𝟎𝟎

𝒏 = 𝟏:

Figure 1.3: Memory diagrams of the program from Figure 1.2 with different
concretization values of n.
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value of n, is symbolic, we are forced to perform a concretization before the allocation

itself. Assuming that the value of n is concretized to 1, we then allocate the array ptrs,

and initialize its only cell at line 4. Assume that the base addresses of the memory

objects allocated at lines 2 and 4 are 0x80000000 and 0x80001000, respectively, and

that the SMT array of the memory object associated with ptrs is aptrs . The upper part

of Figure 1.3 depicts the state of the memory after line 5 when n is concretized to 1. At

line 7, we define the symbolic variable k whose value, denoted by k, is unconstrained.

Then, we execute the branch at line 8, and both of the branch sides are feasible here,

but for the sake of the example, assume that we take the branch. In that case, we add

the condition 0 ≤ k < 2 to the path constraints and execute lines 10-12.

Recall that the value of k is symbolic, so the pointer used to access ptrs at line 10

is symbolic as well. More specifically, the value of this pointer is 0x80000000 + 4 · k.

In order to dereference this pointer, we first need to resolve it. To do so, we scan the

address space, which contains two memory objects, and the resulting resolution queries

are:

0 ≤ k < 2 ∧ 0 ≤ ((0x80000000 + 4 · k)− 0x80000000) < 4

0 ≤ k < 2 ∧ 0 ≤ ((0x80000000 + 4 · k)− 0x80001000) < 10

In this case, only the first query is satisfiable, so we conclude that this pointer is resolved

to the memory object associated with ptrs. Before dereferencing this pointer, we need

to check the validity of the accessed offset, which is given by:

(0x80000000 + 4 · k)− 0x80000000

and can be simplified to 4 ·k. To do so, we check the satisfiability of the following query:

0 ≤ k < 2 ∧ 4 · k ≥ 4

In this case, the query is satisfiable when k = 1, so we detect an out-of-bounds memory

access.

Now, let us examine a different path under the assumption that the value of n

at line 2 is concretized to 2 instead of 1. Similarly to the first path, we allocate the

array ptrs at line 2, and initialize its cells in the two iterations at line 4. As before,

assume that the memory object associated with ptrs has the base address 0x80000000
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and its SMT array is aptrs . In addition, assume that the two memory objects allocated

at line 4 have the base addresses 0x80001000 and 0x80002000, respectively, and that

their SMT arrays are a1 and a2, respectively. The lower part of Figure 1.3 depicts the

state of the memory after line 5 when n is concretized to 2.

As in the first path, when we reach the dereference of the symbolic pointer

0x80000000 + 4 · k at line 10, we have to resolve it. To do so, we scan the address

space, which this time contains three memory objects, and the resulting resolution

queries are:

0 ≤ k < 2 ∧ 0 ≤ ((0x80000000 + 4 · k)− 0x80000000) < 8

0 ≤ k < 2 ∧ 0 ≤ ((0x80000000 + 4 · k)− 0x80001000) < 10

0 ≤ k < 2 ∧ 0 ≤ ((0x80000000 + 4 · k)− 0x80002000) < 10

Here, only the first query is satisfiable, so we conclude that this pointer is resolved to

the memory object associated with ptrs. As before, the accessed offset here is given

by:

(0x80000000 + 4 · k)− 0x80000000

which can be simplified to 4 · k. To check its validity, we check the satisfiability of the

following query:

0 ≤ k < 2 ∧ 4 · k ≥ 8

In this case, the query is unsatisfiable, so we can safely access the resolved memory

object.

Since the value of k is symbolic, the pointer s obtained at line 10 is symbolic as

well. More specifically, the value of this pointer is:

select4(a, (0x80000000 + 4 · k)− 0x80000000)

where a denotes the SMT array of ptrs at this point:

a ≜ store4(store4(aptrs , 0, 0x80001000), 4, 0x80002000)

In order to dereference the pointer s at line 12, we scan the address space again, and
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the resulting resolution queries are:

0 ≤ k < 2 ∧ 0 ≤ (select4(a, 4 · k)− 0x80000000) < 8

0 ≤ k < 2 ∧ 0 ≤ (select4(a, 4 · k)− 0x80001000) < 10

0 ≤ k < 2 ∧ 0 ≤ (select4(a, 4 · k)− 0x80002000) < 10

Here, the two last queries are satisfiable, so we conclude that s may point to the two

memory objects allocated at line 4. Since s may point to multiple memory objects,

we fork, and obtain two symbolic states: In one case, s points to the memory object

allocated in the first iteration at line 4, and in the other case, s points to the memory

object allocated in the second iteration. The path constraints corresponding to these

symbolic states are identical to the second and third resolution queries above. Consider,

for example, the first case, where s is resolved to the memory object whose base address

is 0x80001000. When s is accessed at line 12, the offset is given by:

select4(a, 4 · k)− 0x80001000

and after the update of s[0], the SMT array of the updated memory object is set to:3

store(a1, select4(a, 4 · k)− 0x80001000, 97)

After that, we deallocate at lines 15-18 the memory objects that were allocated at

the beginning of the program. Let us see, for example, how the deallocation is performed

in the first iteration of the loop at lines lines 15-17. Here, the value of the pointer stored

in the first cell is:

select4(a, 0)

To deallocate this pointer, we first need to resolve it, and to do so, we scan the address

space and generate the following resolution queries:

0 ≤ k < 2 ∧ select4(a, 0) = 0x80000000

0 ≤ k < 2 ∧ select4(a, 0) = 0x80001000

0 ≤ k < 2 ∧ select4(a, 0) = 0x80002000

3Recall that the ASCII code of a is 97.
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In this case, only the second query is satisfiable, so we conclude that this pointer is

resolved to the memory object allocated in the first iteration at line 4. The deallocation

of the remaining memory objects is performed in a similar manner.
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1 char **arrays[2];
2 for (int i = 0; i < 2; i++) {
3 arrays[i] = malloc(2 * sizeof(char *));
4 for (int j = 0; j < 2; j++) {
5 arrays[i][j] = malloc(10);
6 }
7 }
8
9 int i, j; // symbolic

10 char **array = arrays[0];
11 if (0 <= i && i < 2 && 0 <= j && j < 10) {
12 char *buffer = array[i];
13 buffer[j] = ’a’;
14 }

Figure 1.4: A symbolic pointer with multiple resolution.

1.2 Main Results

In this section, we present the main results of this thesis using a series of simple

examples. We do not use a single example, since that will require from us to present a

rather complicated program, which might be hard to follow.

1.2.1 Relocatable Memory Model

Handling symbolic pointers is challenging for existing SE engines [38, 39, 89]. First, to

resolve a symbolic pointer we need to solve resolution queries, which increases the cost of

constraint solving. Second, if a symbolic pointer is resolved to multiple memory objects,

then the execution is forked according to the number of resolved memory objects, which

increases path explosion.

Consider, for example, the program from Figure 1.4. We start with the execution of

the initialization loop at lines 2-7, where at each iteration we allocate an array of pointers

at line 3, and initialize the pointer values in the inner loop at line 5. Figure 1.5 depicts

the state of the memory after executing lines 2-7. The two arrays allocated at line 3

correspond to array1 and array2 . The two buffers allocated in the first iteration of the

outer loop at line 5 correspond to buffer1 and buffer2 . Then, we access the first array

(array1 ) at line 10, and perform a memory safety check at line 11 in order to access the

i-th buffer at the j-th offset. Since i is symbolic, then the pointer accessed at line 12

is a symbolic pointer, and it is resolved to the memory object (array1 ) allocated in the

first iteration of the outer loop at line 3. Since j is symbolic, then the pointer accessed

at line 13 is symbolic as well. This symbolic pointer is resolved to the two memory
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…

𝒂𝒓𝒓𝒂𝒚𝟏

𝒃𝒖𝒇𝒇𝒆𝒓𝟏 𝒃𝒖𝒇𝒇𝒆𝒓𝟐

𝒂𝒓𝒓𝒂𝒚𝒔

𝒂𝒓𝒓𝒂𝒚𝟐

…

Figure 1.5: A memory diagram of the program from Figure 1.4.

objects (buffer1 and buffer2 ) allocated in the first iteration of the outer loop at line 5,

so standard symbolic execution must fork.

One way to mitigate this problem, i.e., avoid forking, is to use the segmented

memory model [73]. This approach uses static pointer analysis to partition the abstract

objects in the program, i.e., the static allocation sites,4 into disjoint groups, such that

abstract objects that may be pointed to by the same pointer are mapped to the same

group. During the symbolic execution, each group is associated with a segment, i.e., a

memory block. When there is an allocation of a memory object whose static allocation

site belongs to a given group, then the memory object is allocated in the segment

associated with that group. This way, every symbolic pointer is guaranteed to be

resolved to at most one segment, which helps to reduce the resolution queries and the

forking. The main disadvantage of this memory model is the dependence on static

pointer analysis. In large programs, static pointer analysis is usually imprecise, so the

partitioning may result in large groups that contain many abstract objects. During

the symbolic execution, such large groups will lead to the allocation of large segments,

which in turn will result in large SMT arrays that slow down the SMT solver, thus

overshadowing the benefit of reduced forking.

To illustrate this, consider the program from Figure 1.4 again. Typical pointer

analyses are index-insensitive and thus cannot distinguish between the different buffers

4In static pointer analysis, a static allocation site is the program location where the corresponding
allocation occurs.
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that are allocated at line 5, as they all have the same static allocation site, so these

buffers will be allocated in the same segment. Note, however, that this segment clearly

contains redundant memory objects, since the symbolic pointer at line 13 is resolved to

the buffers (buffer1 and buffer2) associated with the first array only (array1).

To mitigate this problem, we propose a relocatable memory model. In this memory

model, the base addresses observable by the symbolic state are symbolic rather than

concrete. The non-overlapping property is preserved by maintaining additional address

constraints, which constrain each symbolic base address to a constant value. This

gives us the ability to relocate memory objects, i.e., modify their underlying address

constraints in a way that is transparent to the symbolic state. Now, instead of

partitioning the memory objects into segments ahead of time, we can use the relocatable

memory model to create the segments on demand during the symbolic execution. If a

symbolic pointer is resolved to multiple memory objects, we create a new segment and

relocate the resolved memory objects, which were allocated before, to that segment.

Note that the newly created segment contains only memory objects that can be pointed

to by that symbolic pointer, without any spurious ones. This way, we can have segments

containing fewer memory objects while still handling symbolic pointers without forking.

Smaller segments result in smaller SMT arrays which, in turn, help to reduce the cost

of constraint solving.

In our example, the symbolic pointer at line 13 is resolved to the two buffers

associated with the first array (array1). Therefore, we will create a new segment,

and relocate the two resolved memory objects into that segment. This way, the created

segment does not contain spurious memory objects, i.e., the buffers associated with the

second array.

In our experiments on real-world benchmarks, we show that our approach accelerates

constraint solving, while still preserving the benefits of the forking approach for handling

symbolic pointers.

The results were published in [112] and are discussed in Chapter 3.
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1 int z; // symbolic
2 if (z == 0) {
3 allocate_objects();
4 }
5
6 char **array = calloc(2, sizeof(char *));
7 for (int i = 0; i < 2; i++) {
8 array[i] = calloc(10, 1);
9 }

10
11 int i, j; // symbolic
12 if (0 <= i && i < 2 && 0 <= j && j < 10) {
13 char *buffer = array[i];
14 if (buffer[j] == ’a’) {
15 // do something...
16 }
17 }

Figure 1.6: A simple example with address-dependent queries.

1.2.2 Address-Aware Query Caching

Another problem imposed by the standard memory model relates to query caching [39,

103, 119]. Query caching is an optimization used in symbolic execution to reduce the

cost of constraint solving, which is based on a cache that memoizes the satisfiability

of solved queries. If a given query does not exist in the cache, then its satisfiability is

determined using the SMT solver and the cache is updated accordingly. Otherwise, the

satisfiability of that query is determined by the cached result without using the SMT

solver.

In the standard memory model, where concrete base addresses are used, existing

query caching techniques cannot efficiently handle address-dependent queries, i.e.,

queries that involve address values, which are generated in SE engines such as

KLEE [39], ANGR [103], Manticore [85], and SAGE [56].

Consider, for example, the program from Figure 1.6. We start with the execution

of the branch at line 2, which leads to a fork because the variable z is symbolic.

Let us first follow the path that does not take the branch at line 2. In that case,

we then allocate an array of pointers at line 6, and initialize the pointers at line 8.

At line 12, we perform a memory safety check in order to access the i-th buffer at the

j-th offset. Recall that the values written to array are the base addresses of the buffers

allocated at line 8, and since i is symbolic, the value of buffer at line 13 is symbolic

and depends on the values of the assigned base addresses. More specifically, assuming

that the base addresses of the two memory objects allocated at line 8 are 0x80001000
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and 0x80002000, and that the SMT array of the memory object associated with array

is aarray , the value of buffer at line 13 is:

select4(store4(store4(aarray, 0, 0x80001000), 4, 0x80002000), i ∗ 4)

where i is the value of the symbolic variable i. Therefore, the query generated at line 14

is address-dependent.

Now, let us follow the other path which takes the branch at line 2. Here, we allocate

some memory objects at line 3, and then execute the same flow as before. Note, however,

that this time the base addresses of the memory objects allocated at line 8 might differ

from those in the first path. When that happens, for example, if the base addresses of

these two memory objects are 0x80003000 and 0x80004000, then the value of buffer

at line 13 will be:

select4(store4(store4(aarray, 0, 0x80003000), 4, 0x80004000), i ∗ 4)

As a result, the query generated at line 14 will differ from the analogous query generated

in the first path.

The only difference between the queries generated in the two paths comes from the

address values,5 due to a different sequence of allocations in each path. Intuitively, since

the behavior of the program in Figure 1.6 is agnostic to the allocated base addresses,

the queries generated in the two paths are equisatisfiable. However, in the standard

memory model, we cannot distinguish address values from non-address values, which

makes it hard to detect the relation between the queries generated in the two paths.

Therefore, in the second path, we will not be able to reuse the results of the queries

solved in the first path, which will hurt the effectiveness of query caching.

To mitigate this problem, we use the relocatable memory model in which concrete

base addresses are replaced with symbolic ones (see Section 1.2.1). This way, the

symbolic base addresses propagate to the queries, which allows us to distinguish address

values from non-address values. This, in turn, helps detecting queries that are identical

up to renaming of symbolic addresses. When such queries are detected, and the address

spaces of the corresponding symbolic states are identical up to reordering of address

intervals, then we can conclude that the queries are equisatisfiable.

5Technically, the queries contain different conditions on z, but these can be sliced away.
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In our experiments on real-world benchmarks, we show that our query caching

approach improves the cache utilization and reduces the cost of constraint solving

compared to standard query caching.

The results were published in [114] and are discussed in Chapter 4.
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1 size_t n; // symbolic
2 int z; // symbolic
3
4 char *p = malloc(n);
5 for (int i = 0; i < n; i++) {
6 if (z == 0) {
7 break;
8 }
9 if (i > 0) {

10 p[i] = i;
11 }
12 }

Figure 1.7: A simple example with a symbolic-size allocation.

1.2.3 Bounded Symbolic-Size Model

Another problem with the standard memory model relates to the allocation of memory

objects whose size is symbolic. In existing SE engines [39, 85, 103], every memory object

has a concrete size. Therefore, if the user wants to analyze a program that has variable-

size inputs, e.g., arrays or strings, then the size of these inputs must be fixed before the

analysis starts. Moreover, if during the symbolic execution there is an allocation of a

symbolic size, then the allocation size must be concretized to a specific concrete value.

All this usually leads to an incomplete analysis, i.e., partial path exploration, which

then has a negative impact on code coverage and bug finding.

Consider, for example, the code in Figure 1.7. At lines 1 and 2, we define the

symbolic variables n and z, and at line 4, we allocate a buffer of a symbolic size n. In

the standard memory model, the size of the allocated memory object must be concrete,

so the symbolic size expression n is concretized. For the sake of the example, suppose

that n is concretized to 1. After the allocation, we execute the first iteration of the loop

at line 5, and fork at line 6. One of the forked symbolic states exits the loop at line 7,

and the other one executes the branch at line 5 and exits the loop as well, due to the

constraint on n. In summary, in the standard memory model, we are able to explore

only two paths, while missing the path that reaches line 10. Note that this problem

would not have occurred if we chose, for example, n = 3, but then, in another situation,

we might not cover code that is reachable only when the buffer is too short.

To mitigate this problem, we propose a memory model that supports symbolic-size

allocations, and thus enable the analysis of programs with inputs whose size belongs to

a range of values. In this memory model, the size of a memory object can be concrete
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or symbolic. When the size of a memory object is symbolic, it is bounded by a user-

specified capacity. As we bound the sizes of memory objects that have a symbolic size, we

can still use the linear address space as is done in the standard memory model, without

making any other changes. Therefore, our memory model can be easily integrated with

existing SE engines.

Now, let us see how the new memory model works with our example. When we reach

the allocation at line 4, we allocate a memory object with a symbolic size n. Assuming

that the capacity is 3, for example, we add to our path constraints a condition that limits

the value of the symbolic size n by 3. The underlying memory object is comprised of 3

bytes but this is unobservable to the user for whom the size is n. In the new memory

model, we are able to explore five paths: Four paths which execute k iterations of the

loop (k = 0, 1, 2, 3) and exit the loop at line 5, and another path which executes one

iteration and exits the loop at line 7.

As can be seen from the example, our memory model makes the analysis more

complete, but it also increases the number of forks due to the additional symbolic

expressions, i.e., the symbolic sizes. This is particularly noticeable in size-dependent

loops, i.e., loops where the number of iterations depends on a symbolic size expression.

To cope with the amplified path explosion, we propose to use state merging. State

merging [69, 77] is a technique which allows merging multiple symbolic states together.

The merged symbolic state, obtained from merging multiple symbolic states, is encoded

using disjunctions and ite’s. More specifically, the path constraints of the merged

symbolic state are encoded as a disjunction over the path constraints of the original

symbolic states, and the value of each memory location is encoded as an ite expression

over the values of that memory location in the original symbolic states. We propose to

apply state merging in size-dependent loops, i.e., locations where our memory model

introduces additional forking. On one hand, applying state merging this way leads to

more complex constraints, but on the other hand, it reduces forking and makes the

exploration more similar to the exploration obtained with the standard memory model,

as if no additional forking was ever introduced.

In our example, we detect the loop at lines 5-12 as size-dependent, and apply state

merging on the resulting symbolic states. When merging symbolic states, they must

have the same instruction counter, so we create two merging groups: One group that

contains the symbolic states that exit the loop at line 5, and another group that contains
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the symbolic state that exits the loop at line 7. This eventually results in two paths

instead of the five paths that were obtained with the forking approach when state

merging was not applied.

In our experiments on real-world benchmarks, we show that the symbolic-size model

indeed helps increase the coverage compared to the concrete-size model (Section 1.1.2).

In addition, when the symbolic-size model is used, we show that our state merging

approach often outperforms the forking approach in terms of analysis time and code

coverage. We also show real-world examples where concretizations caused by symbolic-

size allocations lead to missed bugs.

The results were published in [113] and are discussed in Chapter 5.
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1 char *strchr(const char *s, int c) {
2 int i = 0;
3 while (s[i] != ’\0’) {
4 if (s[i] == c) {
5 return s + i;
6 }
7 i++;
8 }
9 return NULL;

10 }
11
12 int main() {
13 size_t n; // symbolic
14 char *s = malloc(n + 1); // symbolic
15 s[n] = 0;
16
17 char *p = s;
18 for (int j = 0; j < 2; j++) {
19 p = strchr(p, ’a’);
20 if (p != NULL) {
21 p++;
22 } else {
23 break;
24 }
25 }
26
27 return 0;
28 }

Figure 1.8: Encoding explosion with a sequence of invocations to strchr.

1.2.4 State Merging with Quantifiers

As was mentioned above, state merging [69, 77] is a technique which allows merging

multiple symbolic states together. On one hand, state merging helps reducing the forks,

but on the other hand, it introduces disjunctive constraints and ite’s. The latter usually

results in complex constraints which are hard to solve, especially when the number of

symbolic states being merged is high.

This happens, for example, in the approach presented in Section 1.2.3, which applies

state merging in loops where the symbolic-size model introduces additional forking.

That approach indeed helps reducing the forks, however, we observed that in cases

where the merged values propagate to the path constraints, the solving time may be

high which, in turn, may eliminate the benefit of reducing the number of forks. This

is especially noticeable when the number of symbolic states being merged is high, as

typically happens when the input capacity is high.

To illustrate this, consider the symbolic execution of the program in Figure 1.8

using the symbolic-size model described in Section 1.2.3. At lines 13-15, we allocate
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the symbolic (null-terminated) buffer s whose symbolic size is n + 1. Suppose that the

capacity of the allocated buffer is 4, i.e., n+1 ≤ 4. In the first iteration of the for loop,

we call strchr at line 19 with the allocated buffer, and suppose that we apply state

merging in the loop in strchr (lines 3-8). For the sake of the example, consider the

three symbolic states that reach line 5, whose path constraints are:

(1) n ≤ 3 ∧ select(s, 0) ̸= 0 ∧ select(s, 0) = 97

(2) n ≤ 3 ∧ select(s, 0) ̸= 0 ∧ select(s, 0) ̸= 97 ∧ select(s, 1) ̸= 0 ∧ select(s, 1) = 97

(3) n ≤ 3 ∧ select(s, 0) ̸= 0 ∧ select(s, 0) ̸= 97 ∧ select(s, 1) ̸= 0 ∧ select(s, 1) ̸= 97 ∧ select(s, 2) ̸= 0 ∧ select(s, 2) = 97

When we merge those three symbolic states, then in the resulting merged symbolic

state, the path constraints φ are:

φ ≜ (n ≤ 3 ∧ select(s, 0) ̸= 0 ∧ select(s, 0) = 97) ∨

(n ≤ 3 ∧ select(s, 0) ̸= 0 ∧ select(s, 0) ̸= 97 ∧ select(s, 1) ̸= 0 ∧ select(s, 1) = 97) ∨

(n ≤ 3 ∧ select(s, 0) ̸= 0 ∧ select(s, 0) ̸= 97 ∧ select(s, 1) ̸= 0 ∧ select(s, 1) ̸= 97 ∧ select(s, 2) ̸= 0 ∧ select(s, 2) = 97)

and the merged value v of the variable i is:

v ≜ ite(n ≤ 3 ∧ select(s, 0) ̸= 0 ∧ select(s, 0) = 97,

0,

ite(n ≤ 3 ∧ select(s, 0) ̸= 0 ∧ select(s, 0) ̸= 97 ∧ select(s, 1) ̸= 0 ∧ select(s, 1) = 97,

1,

2))

Now, let us see what happens when we continue the execution with the merged

symbolic state from above. Recall that we merged the symbolic states in which the

character ’a’ is found, so the return value of strchr in the first iteration at line 19 is

not null , so we execute another iteration and call strchr again at line 19.

Suppose that we perform another state merging operation, where similarly to the

first one, we merge the symbolic states that reach line 5. In the first iteration of the

for loop, the pointer returned by strchr at line 19 was incremented by one at line 21.

Therefore, this time, the path constraints in the resulting merged symbolic state are:

(φ ∧ select(s, v + 1) ̸= 0 ∧ select(s, v + 1) = 97) ∨

(φ ∧ select(s, v + 1) ̸= 0 ∧ select(s, v + 1) ̸= 97 ∧ select(s, v + 2) ̸= 0 ∧ select(s, v + 2) = 97)
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and the merged value of the variable i is:

ite(φ ∧ select(s, v + 1) ̸= 0 ∧ select(s, v + 1) = 97,

1,

2)

where φ and v are the merged path constraints and merged value of i obtained in the

first merging operation, respectively.

One can see that if we increase the number of symbolic states being merged, for

example, by setting the capacity of the buffer allocated at line 14 to 100 instead of 4,

or increase the number of subsequent invocations to strchr, then the encoding of the

resulting merged symbolic states will become even more complex. When state merging

is applied in real-world programs, the merged values are usually complex and often

propagate to the path constraints, which eventually leads to encoding explosion.

To mitigate this problem, we propose using a different formula encoding: When the

path constraints of the symbolic states being merged share some form of uniformity, we

can encode the merged symbolic states using quantifiers, while using less disjunctions

and ite’s.

For example, in the first merging operation from above, the path constraints in the

merged symbolic state can be encoded as:

n ≤ 3 ∧

0 ≤ k1 ≤ 2 ∧

∀i. 1 ≤ i ≤ k1 → (select(s, i− 1) ̸= 0 ∧ select(s, i− 1) ̸= 97) ∧

(select(s, k1) ̸= 0 ∧ select(s, k1) = 97)

where k1 is a fresh auxiliary variable. Moreover, when the path constraints are encoded

this way, the merged value of i can be simplified to k1. Then, in the second merging

operation, the path constraints can be encoded as:

n ≤ 3 ∧

0 ≤ k1 ≤ 2 ∧

∀i. 1 ≤ i ≤ k1 → (select(s, i− 1) ̸= 0 ∧ select(s, i− 1) ̸= 97) ∧

(select(s, k1) ̸= 0 ∧ select(s, k1) = 97) ∧

0 ≤ k2 ≤ 1 ∧

∀i. 1 ≤ i ≤ k2 → (select(s, k1 + i) ̸= 0 ∧ select(s, k1 + i) ̸= 97) ∧

(select(s, k1 + k2 + 1) ̸= 0 ∧ select(s, k1 + k2 + 1) = 97)



24 CHAPTER 1. INTRODUCTION

where k2 is another fresh auxiliary variable, and the merged value of i can be simplified

to k1 + k2 + 1.

By using this encoding, we are able to reduce the encoding explosion. In practice,

however, solving the generated quantified queries is often more expensive than solving

the analogous quantifier-free queries. To overcome this, we propose a specialized solving

procedure that leverages the particular structure of the generated quantified queries.

This solving procedure helps to reduce the solving time in many cases.

In our experiments on real-world benchmarks, we show that our approach often

leads to significant performance gains compared to standard state merging and standard

symbolic execution.

The results were published in [115] and are discussed in Chapter 6.

1.2.5 Artifacts Availability

To facilitate the spread and application of the ideas presented here, we provide publicly

available tools and replication packages.

Outline. The rest of the thesis is organized as follows: Chapters 3 to 6 describe in

detail the results presented in Sections 1.2.1 to 1.2.4, respectively. Chapter 7 discusses

other approaches related to this thesis. Chapter 8 summarizes the contributions of this

thesis. Chapter 9 presents future research directions.



Chapter 2

Preliminaries

2.1 Logical Notations

We encode symbolic path constraints and memory contents in first-order logic modulo

theories using formulas and terms, respectively. A term is either a constant, a variable,

or an application of a function to terms.1 A formula is either an application of a

predicate symbol to terms or obtained by applying boolean connectives (¬, ∧, ∨, →,

↔) or quantifiers (∀, ∃) to formulas.

Let φ and φ′ be formulas and m a model. We write m |= φ to denote that m is a

model of φ. We write φ |= φ′ to denote that every model of φ is a model of φ′. We

write φ ≡ φ′ to denote that m |= φ if and only if m |= φ′ for any model m. We write

φ
.
= φ′ to denote that φ and φ′ are syntactically equal.

Let t and t′ be terms and m a model. We denote by m(t) the value assigned by m

to t. We write t ≡ t′ to denote that m(t) = m(t′) for any model m.

We use the following functions from the standard theory of arrays [59]: K (c) returns

an array whose cells are initialized to c, select(a, i) returns the value of the i-th cell of

a, and store(a, i, v) returns a new array obtained from a by replacing the contents of

the i-th cell with v. In some cases, we write a[e] as a shorthand for select(a, e).

We use ≜ to denote definitions.

1In our examples, we use the functions from the bit-vector and array theories [59].

25
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2.2 Standard Memory Model

In modern SE engines, e.g., KLEE [39] and Manticore [85], a memory object is

represented as a tuple:

(b, s, a) ∈ N+ ×N+ ×A

where b is a concrete base address, s is a concrete size, and a is an SMT array that

tracks the values written to the memory object.2 Given a memory object mo, we denote

its base address, size, and SMT array by mo.addr , mo.size, and mo.array , respectively.

The address space is represented as a set of non-overlapping memory objects, i.e.,

every memory object has its own unique address interval which does not intersect with

address intervals of other memory objects: For every two distinct memory objects

(b1, s1, a1) and (b2, s2, a2), it holds that:

b1 > b2 + s2 ∨ b2 > b1 + s1

This non-overlapping property reflects the fact that different memory objects are located

at different parts of the memory, and enables identifying memory objects by addresses,

i.e., a concrete address can belong to at most one memory object. Thus, when the

program accesses a concrete address, the SE engine can determine which SMT array

represents the content at that address and act accordingly.

When a pointer p is accessed, the SE engine needs first to resolve it, i.e., find the

memory objects that p may point to. Given a memory object mo ≜ (b, s, a), the SE

engine determines if p may point to mo by checking if the following resolution query is

satisfiable (w.r.t. the path constraints):

b ≤ p < b + s

When p may point to mo, the offset i with which the memory object is accessed is

given by: p− b. The access operations, i.e., read and write, are encoded using the select

and store operators from array theory [59], respectively. When the byte at offset i of

mo is read, its value is expressed by select(a, i). When a value v is written at offset i

of mo, the SMT array a is replaced by a new SMT array expressed by store(a, i, v).3

2SMT arrays are in fact unbounded, but the SE engine records the allocated size and never accesses
cells beyond it.

3SE engines use an optimized representation when a memory object is accessed only with concrete
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To detect out-of-bounds memory accesses, i.e., buffer overflows, the SE engine

allocates after each memory object in the address space a so-called red zone, an

unmapped memory region residing between each two consecutive memory objects. We

note, however, that the SE engine is not guaranteed to detect all the possible bugs,

since the size of the red zone is bounded.

2.3 Symbolic State

A symbolic state s consists of (1) an instruction counter s.ic, (2) a path constraint

s.pc, (3) a symbolic store s.vars that associates variables V with symbolic expressions,4

(4) and a heap s.heap which is a set of memory objects.

In addition, we define the auxiliary function get-memory-object-by-address(s, b),

which receives a symbolic state s and a base address b, and returns the memory object

from s.heap whose base address is b, if such exists, and null otherwise.

2.4 Execution Tree

An execution tree [76] is a tree where every node n is associated with a symbolic state n.s

and a symbolic condition n.c corresponding to the taken branch such that the conditions

associated with any two sibling nodes are mutually inconsistent and the condition of

the root node is true. The execution tree characterizes the analysis of an arbitrary code

fragment, which is not necessarily the whole program. The root node corresponds to

the symbolic state that reached the entry point of the code fragment, and the leaf nodes

correspond to the symbolic states that completed the analysis of the code fragment.

Definition 2.4.1. Let t be an execution tree with a root r. If there is a path from n1

to nk in t, then we denote the sequence of nodes on that path by πt(n1, nk), and write

πt(nk) when n1 is the root r. Given a path πt(n1, nk) ≜ n1;n2; ...;nk in t, we define its

tree path condition (tpc) and tree path condition tail (tpc):

tpct(n1, nk) ≜ n1.c ∧ tpct(n1, nk) tpct(n1, nk) ≜
∧

1<i≤k

ni.c

(non-symbolic) offsets. For simplicity, we avoid describing this optimization.
4Strictly speaking, V contains only the global variables of the program while the memory state also

maintains a stack of frames (symbolic stores) that maintain the values of local variables. For simplicity,
we elide this detail and assume that s.vars tracks the values of all the variables in the program.
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𝒙 = 𝟎

𝒏𝟏
¬𝒙 = 𝟎

𝒙 < 𝟎 ¬𝒙 < 𝟎

𝒏𝟐 𝒏𝟑

𝒏𝟒 𝒏𝟓

Figure 2.1: The execution tree of the program from Figure 1.1.

If there is no path from n1 to nk in t, then we define:

tpct(n1, nk) ≜ false, tpct(n1, nk) ≜ false

We write tpct(n) ≜ tpct(r, n) and tpct(n) ≜ tpct(r, n) as shorthands. We omit the tree

subscript when it is clear from the context.

Definition 2.4.2. Given an execution tree t with root r, we say that t is valid if the

following holds for every node:

n.s.pc ≡ r.s.pc ∧ tpct(n)

Note that r.s is not necessarily the initial symbolic state of the whole program, so

tpct(n) is a suffix of the path constraints. From now on, we assume that all execution

trees are valid.

For example, consider the symbolic execution of the function get_sign

from Figure 1.1 when the variable x has the symbolic value x. The resulting execution

tree is depicted in Figure 2.1, where the symbolic condition associated with each node is

depicted on the incoming edge of the node. Here, for example, the node n5 corresponds

to the symbolic state that reaches line 9, and:

n5.c ≜ ¬x < 0, n5.s.pc ≜ ¬x = 0 ∧ ¬x < 0
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Consider the path between n3 and n5, then:

π(n3, n5) ≜ n3;n5

tpc(n3, n5) ≜ ¬x = 0 ∧ ¬x < 0

tpc(n3, n5) ≜ ¬x < 0

2.5 State Merging

As was mentioned above, a heap is a set of memory objects. Two heaps h1 and h2 are

merge-compatible if for every memory object (b1, s1, a1) in h1, there exists is a memory

object (b2, s2, a2) in h2 such that b1 = b2 and s1 = s2, and vice versa. Symbolic states

are merge-compatible if: (1) they have the same instruction counter, (2) they contain

the same variables in their stores, (3) and their heaps are merge-compatible.

Definition 2.5.1. The merged symbolic state resulting from the merging of the merge-

compatible symbolic states {si}ni=1 is the symbolic state s defined as follows:

s.ic ≜ s1.ic,

s.pc ≜ merge-pc({si}ni=1)

s.vars ≜ λv ∈ V. merge-values({si}ni=1, v)

s.heap ≜ {merge-object({si}ni=1, b) | (b, s, a) ∈ s1.heap}

where merge-pc, merge-values, and merge-object are defined at Algorithm 1.

The merge-pc function creates a disjunction over the path constraints of the input

symbolic states. The merge-values function takes the values of the variable v in each

of the input symbolic states, and creates an ite expression over those values. Since we

assume that the path constraints of the merged symbolic state hold, the right value

of the innermost ite expression is not guarded by its corresponding condition. The

merge-object function takes from each of the input symbolic states the memory object

whose base address is b, and then merges the arrays of those memory objects in a

bytewise fashion. Recall that the heaps are assumed to be merge-compatible, so if one

of the symbolic states contains a memory object whose base address is b, then each

of the other symbolic states is guaranteed to contain a memory object with that base
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Algorithm 1 State merging algorithm.
1: function merge-conditions({φi}ni=1)

2: return
n∨

i=1
φi

3: function merge-pc({si}ni=1)
4: return merge-conditions({si.pc}ni=1)
5: function merge-values({φi}ni=1, {vi}ni=1)
6: if n = 1 then
7: return v1
8: else
9: return ite(φ1, v1,merge-values({φi}ni=2, {vi}ni=2))

10: function merge-var({si}ni=1, v)
11: return merge-values({si.pc}ni=1, {si.vars[v]}ni=1)
12: function merge-object({si}ni=1, b)
13: {moi}ni=1 ← {get-memory-object-by-address(si, b)}ni=1

14: s ← mo1.size
15: a ← new-smt-array()
16: for 0 ≤ j < s do
17: e← merge-values({si.pc}ni=1, {select(moi.array , j)}ni=1)
18: a ← store(a, j, e)

19: return (b, s, a)

address.

State merging is usually applied on a given code fragment, typically a loop or a

function. Once the symbolic exploration of the code fragment is complete, the resulting

symbolic states are partitioned into (merge-compatible) merging groups. Then, each

merging group is transformed into a single merged symbolic state. Finally, the resulting

merged symbolic states are added to the state scheduler [39] of the SE engine to continue

the exploration.



Chapter 3

Relocatable Addressing Model for

Symbolic Execution

This chapter is based on the results published in [112].

3.1 Introduction

In SE engines such as KLEE [39] and ANGR [103], the address space of a symbolic

state is modeled using a set of memory objects, where each memory object has a fixed

concrete address and its own unique and non-overlapping address interval (Section 2.2).

This model is a reasonable implementation choice, but identifying memory objects

using concrete addresses is not essential: As long as the non-overlapping property of

the memory objects holds, the values of the assigned addresses should not affect the

execution.

We propose a new addressing model where the base addresses observable by the

symbolic state are symbolic values rather than concrete ones. We preserve the non-

overlapping property by maintaining additional address constraints, which constrain

each symbolic base address to some constant value. This addressing model gives us the

ability to relocate a given memory object, i.e., modify its underlying address constraint

in a way that is transparent to the symbolic state. Note that relocating a memory object

is not possible under the existing addressing model, since a memory object is allocated

at a concrete base address that cannot be modified.

To illustrate the benefits of such addressing model, consider the program from

Figure 3.1, inspired by code found in our benchmarks. First, the program executes

31
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an initialization loop, where at each iteration it creates a hash table (line 43) and

initializes it with some values (line 45). Then, at line 49 it performs a lookup on one of

the tables with a symbolic key k. The lookup function table_lookup computes the hash

of the input key, and iterates over the nodes of the relevant bucket to find the matching

element. When the function table_lookup is called at line 49, the value of the pointer

node at line 18 is symbolic, since it depends on the symbolic hash value which is derived

from the symbolic value k. Therefore, at line 20, node->key dereferences a symbolic

pointer.

Symbolic pointers impose a challenge for SE [38, 73]. Each memory object is

associated with a unique SMT array, and then queries involving memory objects are

translated to constraints over the corresponding SMT arrays. When a symbolic pointer

is dereferenced, the SE engine needs to resolve that symbolic pointer, i.e., determine

the memory objects it can refer to. If the symbolic pointer is resolved to more than

one memory object, then we are in the case of multiple resolution. Several memory

models for handling multiple resolutions have been considered in the past: The forking

model [39, 89] forks the current symbolic state for each of the resolved memory objects,

and in each forked state, it constrains the symbolic pointer to the address interval of

the resolved memory object. This approach is relatively efficient in terms of constraint

solving, but it may contribute to path explosion due to the forking. The merging

model [66, 103] creates a disjunction with one disjunct for each of the resolved memory

objects. This way, forks are avoided but the path constraints become more complex

due to the introduction of disjunctions.

Similarly to the merging model, the segmented memory model [73] proposes an

approach which avoids forking, but it achieves that by using array theory [59] rather

than disjunctions. In this model, the memory is split into segments using static pointer

analysis [70, 97, 107, 109], such that each pointer (concrete or symbolic) refers to

memory objects in a single segment. The segments are computed as follows: First,

static pointer analysis is invoked to compute the points-to set of each pointer, i.e., a

set of abstract memory objects which are identified by static allocation sites. Then,

every two intersecting points-to sets are merged into one points-to set, until a fixpoint

is reached, i.e., all the points-to sets are disjoint. A segment is created for each of these

disjoint points-to sets, such that all the memory objects associated with that points-to

set will be allocated in that segment.
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1 typedef struct node_s {
2 unsigned long data;
3 unsigned key;
4 struct node_s *next;
5 } node_t;
6 typedef struct {
7 node_t **buckets;
8 size_t size;
9 } table_t;

10
11 void table_init(table_t *t, size_t n) {
12 t->buckets = calloc(n, sizeof(node_t *));
13 t->size = n;
14 }
15
16 node_t *table_lookup(table_t *t, unsigned k) {
17 unsigned long h = hash(&k, sizeof(k)) % t->size;
18 node_t *node = t->buckets[h];
19 while (node != NULL) {
20 if (memcmp(&node->key, &k, sizeof(unsigned)) == 0) {
21 return node;
22 }
23 node = node->next;
24 }
25 return NULL;
26 }
27
28 void table_insert(table_t *t, unsigned k, int data) {
29 if (table_lookup(t, k)) {
30 return;
31 }
32 unsigned long h = hash(&k, sizeof(k)) % t->size;
33 node_t *node = calloc(1, sizeof(node_t));
34 node->key = k;
35 node->data = data;
36 node->next = t->buckets[h];
37 t->buckets[h] = node;
38 }
39
40 int main(int argc, char *argv[]) {
41 table_t tables[3];
42 for (unsigned i = 0; i < 3; i++) {
43 table_init(&tables[i], 300);
44 for (unsigned j = 0; j < 5; j++) {
45 table_insert(&tables[i], j, 7);
46 }
47 }
48 unsigned k; // symbolic
49 table_lookup(&tables[0], k);
50 return 0;
51 }

Figure 3.1: Motivating example.
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With this approach, forks are avoided when symbolic pointers are encountered, as

each pointer is guaranteed to point to exactly one segment. However, this approach

is limited by the precision of pointer analysis, and the created segments might contain

too many memory objects. A large segment corresponds to a large SMT array which

results in more complex constraints. To illustrate the limitations of pointer analysis,

consider again the program at Figure 3.1. Pointer analysis cannot distinguish between

the different memory objects that are allocated at line 12, as they all have the same

static allocation site. As a result, the bucket arrays of all 3 hash tables are allocated in

one segment. Similarly, all the nodes allocated at line 33 are allocated in one segment

as well. The SMT arrays of both segments are involved in the constraints, as both are

accessed with a symbolic offset: The segment of buckets at line 18, and the segment of

nodes at line 20. The sizes of these SMT arrays are at least three times bigger than those

created by the forking model, due to merging of spurious memory objects. Therefore,

despite of the reduction in the number of paths, the forking model still outperforms the

segmented memory model in this case.

With our addressing model, we can dynamically relocate a memory object, in a

way that is transparent to the symbolic state. Instead of determining the segments

ahead of time, we create them on demand: If a symbolic pointer is resolved to multiple

memory objects, we create a new segment and relocate the resolved memory objects to

that segment. Now, a segment will contain only memory objects that can be pointed

to by a given symbolic pointer, without any spurious ones. At line 49, the function

table_lookup receives the first hash table as an argument, so the symbolic pointer at

line 18 is resolved to a single memory object, the bucket array of the first hash table,

which does not require creating a segment. The symbolic pointer at line 20 is resolved

to nodes from the first hash table only, so the created segment does not contain nodes

from the other two hash tables. This way, we are able to avoid forking while creating

smaller SMT arrays, which allows us to outperform both the segmented and the forking

memory models.

Another challenge arising from the Program in Figure 3.1 relates to solving array-

theory [59] constraints. An array access with a concrete offset can be handled similarly

to scalar variables, but accessing an array with a symbolic offset is more challenging, as

the symbolic offset can refer to multiple locations in the array. In that case, the accessed

value is expressed using an SMT formula over arrays, which creates a variable for each
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offset of the array. Such formulas are hard to solve, especially with large arrays, thus

hindering symbolic execution. The hash tables created at line 43 are initialized with a

bucket array of 300 entries, therefore the size of its corresponding SMT array is 2400

bytes. When calling table_lookup at line 49, the bucket is accessed with a symbolic

offset at line 18, which triggers the usage of array theory. This constraint propagates

into the path constraints that are created later during execution, thus slowing down the

exploration.

With our addressing model, when a big enough memory object is accessed with a

symbolic offset, we can relocate that memory object and split it into several smaller

adjacent memory objects. For example, the symbolic pointer at line 18 was resolved

to exactly one memory object, the bucket array of the hash table. Now, when this

memory object is relocated and split, that symbolic pointer is resolved to multiple

memory objects with smaller SMT arrays. In this case, despite of having more explored

paths due to additional multiple resolutions, the reduced complexity of the constraints

eventually results in faster exploration.

Main contributions:

1. We propose a new addressing model, that allows seamless and dynamic relocation

of memory objects during symbolic execution.

2. We provide an implementation based on KLEE [39], a state-of-the-art symbolic

executor, which we make available as open source.1

3. We show the benefits of our addressing model in two scenarios: improving

the segmented memory model, and reducing the cost of solving array-theory

constraints with large arrays.

Outline. In Section 3.2, we present our relocatable addressing model and its

applications. In Sections 3.3 and 3.4, we discuss our implementation and evaluation,

respectively.

3.2 Proposed Addressing Model

In this section, we present our relocatable addressing model and its applications.
1https://davidtr1037.github.io/ram/

https://davidtr1037.github.io/ram/
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3.2.1 Relocatable Addressing Model

We propose a new addressing model, where the base address of a memory object is a

symbolic value, rather than a concrete one. As before, the program’s address space is

represented as a set of memory objects:

mo ≜ (β, s, a) ∈ 2E×N+×A

However, the base address of a memory object is now a symbolic value β ∈ E and not

a concrete value.2 We enforce the non-overlapping property using hidden concrete base

addresses: Whenever the program allocates a memory object, we create an address pair

which consists of two values: a symbolic one β and a concrete value c. The concrete

value c is used to ensure that the allocated memory objects do not overlap in the

same way that is done in the existing model. The symbolic value β is the value that

propagates to the symbolic state.

We maintain the correlation between the symbolic base addresses and the concrete

ones using address constraints (AC). These constraints record equalities of the form:

β = e

where e is an expression over the hidden concrete base addresses and the symbolic

ones. The address constraints are separate from the path constraints, and they are

only used when we pass a query to the SMT solver. In this model, the base addresses

are symbolic, and any other expression might depend on these symbolic values, which

are not constrained by the path constraints. Therefore, we substitute the address

constraints before passing an expression e to the SMT solver, i.e., obtain e[ei/βi] (for

each address constraint βi = ei).

Remark Another way to preserve the non-overlapping property is to extend the path

constraints of the symbolic state with appropriate constraints over the values of the

symbolic base addresses. If we have memory objects (β1, s1, a1), ..., (βn, sn, an), then we

could have used the following constraints:

∀i, j. i ̸= j → [βi, βi + si) ∩ [βj , βj + sj) = ∅.

2E is the domain of symbolic variables.
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1 #define N (2)
2
3 char **array = calloc(N, sizeof(char *));
4 for (unsigned int i = 0; i < N; i++) {
5 array[i] = calloc(256, 1);
6 }
7
8 unsigned int i; // symbolic, i < 2
9 unsigned int j; // symbolic, j < 100

10 if (array[i][j] == 1) {
11 // do something...
12 }

Figure 3.2: A simple program allocating a two dimensional matrix using an array of
pointers and multiple buffers.

However, we found this approach not scalable, as it requires additional constraints

(quadratic w.r.t. the number of memory objects in the address space), thus making

constraint solving harder.

To illustrate our new addressing model, consider the program from Figure 3.2. When

the array of pointers is allocated at line 3, we do the following: Assuming that a pointer

size is 4 bytes, we first create a new memory object mo1 ≜ (β1, 8, a1) with an address

pair (β1, c1), and add mo1 to the address space. Then, we add a new address constraint

β1 = c1, and the symbolic value β1 is assigned to be the value of the local variable array.

We note that c1 is chosen such that the address interval [c1, c1 + 8) does not intersect

with address intervals of existing memory objects. If the memory objects allocated at

line 5 are mo2 and mo3 with the corresponding address pairs (β2, c2) and (β3, c3), then

before executing line 10 the address space consists of:

{mo1,mo2,mo3}

and the address constraints are:

{β1 = c1, β2 = c2, β3 = c3}

At line 10, where array is accessed with the symbolic offset i, the value of a[i] is a

select expression:

select4(store4(store4(a1, 0, β2), 4, β3), i ∗ 4)

This symbolic pointer has to be resolved using the SMT solver, and to do so we first
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substitute our address constraints, and then the actual expression passed to the SMT

solver is:

select4(store4(store4(a1, 0, c2), 4, c3), i ∗ 4)

With this model, memory objects can be now seamlessly relocated. Suppose that

after the loop at line 6 we want to relocate the memory object mo2 to a new address.

This is achieved by the following steps: First, we allocate a new memory object mo4

with an address pair (β4, c4) of the same size as mo2, and copy the contents of mo2 to

mo4. Second, we update the address space by removing mo2 and adding mo4. Finally,

we modify the address constraint β2 = c2 to be β2 = c4. After the relocation, the

expression obtained by the symbolic read a[i] at line 10 is the same as before:

select4(store4(store4(a1, 0, β2), 4, β3), i ∗ 4)

But now, the substituted expression that will be passed to the SMT solver is different:

select4(store4(store4(a1, 0, c4), 4, c3), i ∗ 4)

In this addressing model the address values observable by the symbolic state are

always symbolic, but those passed to the SMT solver are concrete, which allows efficient

constraint solving. Using this addressing model we can perform dynamically two

operations which are not possible with the existing model: merging multiple memory

objects into one segment (Section 3.2.3), and splitting a memory object to multiple

smaller memory objects (Section 3.2.4).

3.2.2 Limitations

Our relocatable addressing model is applicable for well-behaved programs where the

actual address of a memory object should not affect the behavior of the program. In

particular, the program should only compare pointers of different memory objects for

equality, as required by the C standard, and avoid using fixed addresses besides null .

3.2.3 Application: Inter-object Partitioning

In this section, we show how the relocatable addressing model can be used to

dynamically merge the representations of several memory objects into a single memory
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object, thus reducing the cost of forking when symbolic pointers are dereferenced.

3.2.3.1 Segmented Memory Model

Symbolic pointers impose a challenge for symbolic execution [38, 73]. Since a symbolic

pointer can potentially refer to multiple memory objects, the SE engine first needs to

resolve the pointer, i.e., find all the memory objects to which the pointer could refer

to, such that the right SMT arrays can be referenced. The case of multiple resolution,

where we have more than one resolved memory object, is especially challenging, and

several approaches have been proposed in the past: forking model, merging model, and

segmented memory model (Section 3.1).

In the segmented memory model, memory objects pointed to by any pointer

(symbolic or concrete) are guaranteed to reside in exactly one segment, which makes

the process of symbolic pointer resolution much more efficient. However, this approach

is limited by the precision of pointer analysis, and the computed segments might be

too large in complex programs. A larger segment results in a larger SMT array, thus

affecting the performance of the SMT solver.

3.2.3.2 Dynamically Segmented Memory Model

Instead of conservatively computing the segments ahead of time using pointer analysis,

we propose a dynamic memory partitioning strategy that creates the segments on the

fly using our relocatable addressing model. When we encounter a symbolic pointer that

refers to multiple memory objects mo1, ...,mon where:

moi = (βi, si, ai)

we create a new segment (a memory object of an appropriate size), and relocate all these

memory objects to this segment. First, we allocate a new segment (βs, ss, as) with an

address pair (βs, cs), such that ss =
∑

i si. Then we copy the contents of the memory

objects mo1, ...,mon into that segment, such that after the copy it holds that:

∀j. 0 ≤ j < si → select(as, oi + j) = select(ai, j)

where oi =
∑
k<i

sk
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Finally, we remove from the address space the memory objects mo1, ...,mon, and the

address constraints on βi are updated to:

βi = βs + oi

In the example from Figure 3.2, the symbolic pointer obtained by reading a[i] (at

line 10) is resolved to two memory objects:

mo2 = (β2, 256, a2), mo3 = (β3, 256, a3)

We then create a new segment mo4 = (β4, 512, a4) with the address pair (β4, c4), add

mo4 to the address space, and add the address constraint β4 = c4. Then we remove

from the address space mo2 and mo3, and update the address constraints of β2 and β3

to:

β2 = β4, β3 = β4 + 256

Finally, we copy the contents of mo2 and mo3 to the appropriate locations in mo4.

After this transformation, our symbolic pointer is resolved to only one memory object

(mo4), thus reducing the number of forks. Note that with this approach, the segments

that we dynamically create do not contain redundant memory objects, those that are

not pointed to by the symbolic pointer. We merge only the memory objects that were

resolved using the SMT solver, thus reducing the size of the created segments.

The above transformation is graphically depicted in Figure 3.3. The state of the

memory is shown before and after the transformation. Note that the contents of

the memory object associated with array are not affected by the transformation. In

addition, note that the transformation does not create a red zone (Section 2.2) between

mo2 and mo3, which may result in undetected out-of-bounds memory accesses. This,

however, can be addressed by creating an internal red zone within the segment itself.

3.2.3.3 Optimizations

The segments created using our approach are guaranteed not to be larger than the

segments created by the segmented memory model [73]. However, the resolution process

with our approach is more expensive, as a symbolic pointer still may point to multiple

memory objects, before those are merged into a single segment. The array-theory
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Figure 3.3: Merging multiple memory objects into a single segment.

constraints which are added due to the merging of memory objects are harder to solve,

which makes constraint solving and symbolic pointer resolution more expensive. To

address these issues, we propose several optimizations.

Context Based Resolution Resolving symbolic pointers is a challenging task, as a

symbolic pointer may refer to multiple memory objects. To determine these memory

objects, SE engines (such as KLEE) scan the entire memory, and generate resolution

queries for the scanned memory objects. The dependence on the SMT solver makes this

process expensive, especially when the number of memory objects is high.

We observed that the resolution process can be optimized when using a context

abstraction of the allocated memory objects. When a memory object is allocated, its

k-context abstraction is obtained by the calling instructions of the last k stack frames,

including the current instruction. Once we learn the contexts of the resolved memory

objects at a given location (instruction), we can use that information to speed up the

resolution process at the next time we have a resolution at that location. When memory

objects are scanned during the resolution process, a memory object whose context is

not one of the recorded contexts will be skipped, that is, a query will not be sent to

the SMT solver. Once the resolved memory objects are merged into a new segment (as

described in Section 3.2.3.2), we can check the completeness of the resolution process

with a single query that checks if the symbolic pointer must point to the newly created

segment. If that’s not the case, we fallback to the default resolution mechanism. Note

that applying context-based resolution in the forking model is not beneficial, as checking

completeness requires scanning the entire memory.

Reusing Segments SE engines use various heuristics for optimizing constraint

solving. One of the key heuristics used in KLEE is query caching [38, 39], which
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associates query expressions to their satisfiability results. Consider again the program

from Figure 3.2, and suppose that two symbolic states execute the branch instruction

at line 10. With the dynamically segmented memory model, when the first state

executes the branch, the resolved memory objects pointed to by a[i][j] are merged

to a new segment. Suppose that the memory object allocated at line 3 is (β1, s1, a1),

and the created segment is (β2, 512, a2) with the address pair (β2, c2). In that case, the

expression corresponding to the branch condition a[i][j] == 1 after substituting the

address constraints will be:

select(a2, (select4(a1, i ∗ 4) + j)− c2) = 1

Similarly, if in the second symbolic state the created segment is (β3, 512, a3), then the

expression for the same condition will be:

select(a3, (select4(a1, i ∗ 4) + j)− c3) = 1

The query caching is perform syntactically on the expression level, therefore the second

symbolic state will have a cache miss for this query and will invoke the SMT solver.

To handle this issue we attempt to reuse previously allocated segments. If at a

program location L, a symbolic pointer was resolved to memory objects {moi}ni=1 that

were merged to a segment (βs, ss, as) whose address pair is (βs, cs), then we record the

mapping between the tuples (L, {moi}ni=1) and (cs, as). If later another symbolic state

resolves a symbolic pointer at program location L to the same set of memory objects

{moi}ni=1, the created segment will be (β′s, ss, as) with the address pair (β′s, cs).

This way, when the second symbolic state performs the merge at line 10, its address

pair will be (β3, c2), and its SMT array will be a2. Therefore, the expression of the

branch condition will be equal to that of the first symbolic state, which will result in a

cache hit. In Chapter 4, we propose a more general approach for increasing cache hits.

3.2.4 Application: Intra-object Partitioning

In this section, we show how the relocatable addressing model can dynamically

transform the memory state such that a single memory object allocated by the program

can be represented by several adjacent smaller memory objects, thus reducing the size

of the SMT arrays and consequently the cost of constraint solving.
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When a memory object is accessed with a symbolic offset, the resulting values are

translated using array theory to select and store expressions. Solving array-theory

constraints is usually much harder than regular bit-vector constraints, especially when

the arrays are large. During symbolic execution, we might have many such queries,

which then results in a significant slowdown.

To make constraint solving more efficient, we attempt to reduce the size of large

SMT arrays by dynamically splitting their corresponding memory objects into smaller

ones. We split only memory objects which were accessed with a symbolic offset, as

array theory will not be used for memory objects that are accessed only with concrete

offsets.

The split transformation of a memory object mo ≜ (β, s, a) with an address pair

(β, c) works as follows: We allocate n new memory objects {moi}ni=1 with address pairs

{(βi, ci)}ni=1, such that their addresses are consecutive:

∀i. 1 ≤ i < n→ ci+1 = ci + si

and add the address constraints {βi = ci}ni=1. We initialize the contents of each memory

object moi ≜ (βi, si, ai) using mo such that:

∀j. 0 ≤ j < si → select(ai, j) = select(a, oi + j)

where oi =
∑
k<i

sk

Then we remove from the address space the memory object mo, and update the address

constraint on β to β = β1, the symbolic base address of the first split memory object.

The sizes {si}ni=1 of the memory objects {moi}ni=1 are determined according to a given

partitioning strategy.

Consider the symbolic execution of the program from Figure 3.2 under the forking

model. Assuming that the memory object allocated at line 3 is (β1, 8, a1), the expression

of the pointer from which the value a[i][j] is read is:

select4(a1, i ∗ 4) + j

This symbolic pointer is resolved to the two memory objects allocated at line 5, namely

mo2 and mo3, and the symbolic state is forked. If we continue the execution with the
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Figure 3.4: Splitting a memory object into adjacent smaller memory objects.

symbolic state which constrains the symbolic pointer to the memory object:

mo2 = (β2, 256, a2)

as depicted at the left part of Figure 3.4, then the value of a[i][j] would be:

select(a2, select4(a1, i ∗ 4) + j − β2)

Since this value is read from mo2 with a symbolic offset, we would like to split mo2.

Suppose that we choose a partitioning strategy that splits a given memory object into

n memory objects of equal size. Then for n = 4 we split mo2 into four memory objects:

mo4,mo5,mo6,mo7, as depicted in the right part of Figure 3.4. After the split, we

re-execute the load instruction that references the previous symbolic pointer, but now

it is resolved to two memory objects, mo4 and mo5, due to the constraint j < 100.

Assuming that mo4 ≜ (β4, s4, a4), in the first newly forked state the expression of

the value a[i][j] is now:

select(a4, select4(a1, i ∗ 4) + j − β4)

Due to the split we explore an additional path, the one that constrains the symbolic

pointer to mo5, but we get smaller SMT arrays: a4 and a5. The size of a4 is 64, which

is four times smaller than the size of a2, which makes the new expression much easier

to solve.

The effect of the split transformation depends on the partitioning strategy: If a

memory object is split to smaller memory objects then the SMT arrays are smaller,

but the number of resolved memory objects is higher, and therefore the number of
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forks is higher as well. If a memory object is split to larger memory objects then the

number of resolved memory objects and forks is lower, but the resulting SMT arrays are

consequently larger. The partitioning strategy also affects the resolution process which

works by scanning the entire memory. We investigate this trade-off in Section 3.4.3.

3.3 Implementation

We implemented our addressing model on top of KLEE [39], configured with LLVM 7.0.0

and STP 2.3.3. We modified KLEE’s allocation API to return symbolic base addresses

instead of concrete ones, and extended the symbolic state with the address constraints.

Our addressing model is actually implemented as a mixed concrete-symbolic one, i.e.,

we allow allocation of memory objects with concrete addresses as well. Obviously, the

applications described in Sections 3.2.3 and 3.2.4 cannot be applied to such memory

objects.

In our implementation, symbolic base addresses can be assigned to both stack and

heap memory objects. By default, we do not assign symbolic base addresses for stack

variables, as they are rarely involved in multiple resolutions or array-theory constraints.

For technical reasons, we currently do not support global variables with symbolic base

addresses, but this can be solved by automatically rewriting the program such that

global variables would be allocated on the heap upon the program’s startup.

When a memory object is split, we need to ensure that reads and writes to primitive

fields are performed within the bounds of a single memory object. We assume that

struct fields are aligned to 8 bytes, so the size of each split memory object must be

aligned to 8 bytes as well.

3.4 Evaluation

We perform several experiments in our evaluation: In Section 3.4.1, we empirically

validate the correctness of our implementation. In Sections 3.4.2 and 3.4.3 respectively,

we show the benefits of our addressing model when applied in the context of inter-object

partitioning (dynamic merging) and intra-object partitioning (dynamic splitting).

Experimental Setup. We performed our experiments on an a machine running

Ubuntu 16.04, equipped with an Intel i7-6700 processor and 32GB of RAM.
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Table 3.1: The benchmarks used throughout the evaluation, with their versions and
number of source code lines (SLOC).

Benchmark Version SLOC

m4 1.4.18 80K
make 4.2 28K
SQLite 3.21 127K
apr 1.6.3 60K
gas 2.31.1 266K
libxml2 2.9.8 197K
coreutils 8.31 188K

Benchmarks. The benchmarks used in our evaluation are listed in Table 3.1. GNU

m4 [81] is a macro processor included in most Unix-based systems. GNU Make [82] is a

tool which controls the generation of executables and other non-source files, also widely

used in Unix-based systems. SQLite [108] is one of the most popular SQL database

libraries in the world. Apache Portable Runtime [23] (APR) is a library used by the

Apache HTTP server that provides cross-platform functionality for memory allocation,

file operations, containers, and networking. GNU Assembler [60], commonly known as

gas, is the assembler used by the GNU project, and is the default back-end of GCC.

The libxml2 [6] library is a XML parser and toolkit developed for the Gnome project.

GNU Coreutils [63] is a collection of utilities for file, text, and shell manipulation.

3.4.1 Empirical Validation

In this experiment, we empirically validate the correctness of the implementation of our

addressing model. To do so, we validate that the existing addressing model (vanilla

KLEE) and our addressing model are consistent in terms of path exploration. Here we

use our addressing model without applying the merging (Section 3.2.3) and splitting

(Section 3.2.4) operations, therefore the number of explored paths in both models

is expected to be identical. For this experiment, we used the programs listed in

Table 3.1, where in coreutils we selected 15 programs which behave deterministically

across multiple runs.

For each program, we proceed with the following evaluation process: First, we run

KLEE with its default addressing model for roughly one hour, and record the number of

executed instructions. Then, we run KLEE with our addressing model up to the number

of recorded instructions. Finally, we validate that the number of paths explored by both
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Figure 3.5: The termination times in seconds for each program with the existing
addressing model (Vanilla) and our addressing model (Our Model).

addressing models is identical. To enforce determinism, we ran each program with the

DFS search heuristic and the deterministic memory allocator.

Our experiments confirmed that the number of explored paths with both addressing

models is indeed the same. We also measured the runtime overhead induced by

our addressing model, which comes from substituting expressions and maintaining

additional symbolic values for address expressions, as described in Section 3.2.1.

Figure 3.5 shows the termination time (in seconds) for each program with the two

addressing models. For the programs we tested, the maximum runtime overhead was

16% (in cat from coreutils), and the average runtime overhead was 4%.

3.4.2 Inter-object Partitioning

In this experiment we compare the performance of our dynamically segmented memory

model (DSMM), the segmented memory model (SMM) proposed in [73], and the forking

model (FMM) used in vanilla KLEE. We perform the same experiment as in [73]

(Figures 6,7,8,9 from [73]). The benchmarks of this experiment are: m4 , make, SQLite,

and apr3. These programs use hash tables with symbolic keys, which eventually results

in symbolic pointers with multiple resolutions. Programs in which symbolic pointers

with multiple resolutions are few (gas) or absent (libxml2 , and coreutils) are not used

in this experiment. The impact of our addressing model on the runtime overhead for

these programs is discussed in Section 3.4.1.

We run each program with a timeout of 24 hours using three search heuristics (DFS,
3In SQLite we disabled the counter-example caching query optimization, as it lead to inconsistent

termination times. For SMM, the result was timeout with and without this optimization. Note that
this optimization is different from the query caching discussed in Section 3.2.3.3.
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Table 3.2: Maximum segment size in bytes.

Program Max. Size
SMM DSMM

m4 2753 1008
make 7574 1776
SQLite 17604 528
apr 8316 240

Table 3.3: Termination time in hh:mm or TO (timeout) and memory usage in GB or
OOM (out-of-memory) with different memory models: FMM, SMM and DSMM.

Search
Time Memory

FMM SMM DSMM FMM SMM DSMM

m4
DFS 21:03 01:04 00:26 0.1 0.2 0.3
BFS 09:32 01:04 00:30 OOM 0.3 0.4
Default 09:41 01:10 00:35 OOM 0.5 0.5

make
DFS 06:35 22:49 03:35 1.6 0.8 0.5
BFS 06:33 23:03 03:34 1.6 0.8 0.6
Default 07:27 23:04 03:38 1.5 0.8 0.4

SQLite
DFS 00:18 T.O. 01:36 0.2 0.8 0.4
BFS 00:18 T.O. 01:34 0.3 0.7 0.4
Default 00:18 T.O. 01:36 0.2 0.7 0.5

apr
DFS 01:01 00:07 00:19 0.1 0.1 0.1
BFS 00:59 00:07 00:19 0.1 0.1 0.1
Default 00:57 00:07 00:19 0.1 0.1 0.1

BFS and KLEE’s default search heuristic) with the deterministic memory allocator, and

measure the termination time and the memory consumption with each memory model.

DSMM is run with the optimizations described in Section 3.2.3.3.

Table 3.2 shows the maximum segment sizes for both SMM and DSMM. The

maximum segment size created using our approach is reduced on average by 83%, where

the reduction is 63% in m4 , 77% in make, 97% in SQLite, and 97% in apr . The sizes of

the created segments are crucial for the performance, as the sizes of their corresponding

SMT arrays affect the complexity of constraint solving.

Table 3.3 shows for each benchmark and search heuristic the termination time and

the memory consumption obtained with each memory model. We first discuss the

performance comparison between SMM and DSMM, and then discuss the performance

of FMM compared to the segmentation-based memory models (SMM and DSMM).

In m4 , DSMM achieves an average speedup of 2.2× compared to SMM, with a
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slightly higher memory usage. In make, DSMM achieves an average speedup of 6.3×

compared to SMM, and the memory usage is roughly the same. In SQLite, SMM

does not terminate before the 24 hours time limit (with all search heuristics), and

DSMM achieves an average speedup of at least 14.2×. The memory usage is roughly

the same with both approaches in this case. In apr , the memory usage is equally low in

both approaches, but in terms of termination time, this is the only case where DSMM

performs worse. As was mentioned above, the maximum segment size with DSMM is

significantly smaller, but SMM is still 2.3× faster on overage. The program allocates

several small memory objects using libc’s standard allocation API, and some other

memory objects using a custom pool allocator, that internally uses an array of 8192

bytes. During the symbolic execution of the program, the SMT array associated with

the large array (of the pool allocator) is involved in the queries, which slows down the

exploration. In the case of SMM, the large array and the other small memory objects

are merged into one segment. With DSMM, some of the small memory objects are

dynamically merged into one segment, but the large array remains untouched. In both

approaches, we have a large array of roughly the same size which is involved in the

constraints, thus slowing down the SMT solver. The advantage of DSMM is having

smaller segments, but symbolic pointers are still needed to be resolved (possibly to

multiple memory objects), which leads to higher resolution time. In SMM, a symbolic

pointer is guaranteed to point to a single segment, so the resolution process is less costly.

In this case, the cost of resolution with DSMM is indeed higher, as each resolution query

involves the large array that was mentioned before. In fact, the resolution process takes

roughly 50% of the total execution time, which explains the extra time required for

DSMM to terminate.

When comparing the performance of FMM with the segmentation-based memory

models (SMM and DSMM), the results are mixed. In m4 and apr , FMM performs

significantly slower (with all search heuristics) than other memory models. The memory

usage in apr is basically identical across all memory models, but in m4 the memory

usage with FMM reaches the limit of 8GB (with BFS and Default), which leads to

an incomplete exploration and early termination. In make, FMM performs faster

than SMM but slower than DSMM, and its memory usage is higher compared to

other memory models. In SQLite, FMM outperforms SMM and DSMM in terms of

termination time and memory usage.
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Table 3.4: The number of resolution queries with different context abstractions.

Program Default K-Context
0 1 2 3 4

m4 12050 11434 6920 6920 6808 6808

make 8104 2632 2365 2365 2365 2365

SQLite 9134 6816 6816 3320 3320 1668

apr 96 94 94 94 94 94

DSMM achieves a significant speedup compared to SMM and FMM in most of

the cases.

3.4.2.1 Context-Based Resolution

Here we further investigate the impact of context-based resolution (Section 3.2.3.3). We

use the same benchmarks as in Section 3.4.2, and run each of them with the DFS search

heuristic and the deterministic memory allocator.

To understand how a given context abstraction affects the process of symbolic

pointer resolution, we examine the number of resolution queries. We evaluate two

resolution mechanisms: The default resolution mechanism which scans the entire

memory, and our context-based resolution with the k-context abstraction, which takes

into account the last k calling instructions from the stack trace of a given allocation

site (including the current instruction).

Table 3.4 shows the number of resolution queries with different resolution

mechanisms: The default resolution mechanism and the context-based resolution with

0 ≤ k ≤ 4. The largest reduction occurs when k = 4, where the number of queries

is decreased by 44% in m4 , 71% in make, 82% in SQLite, and 2% in apr . We can

also see that as k increases, the number of resolution queries (non-strictly) decreases.

The impact of k on the reduction rate varies across benchmarks: In make and m4 we

have a significant reduction with k = 0 and k = 1, but increasing k further does not

result in a significant improvement. In SQLite a reduction of 25% is obtained already

with k = 0, and increasing k further to 2 and 4 results in a reduction of 64% and 82%,

respectively. Compared to other benchmarks, the number of created memory objects in

apr is relatively small, so the resolution process with the default mechanism is almost

optimal. The number of resolution queries is reduced by only two queries for k = 0,
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and using higher values does not give any better results.

Columns None and K-Context of Table 3.5 show the termination time with the

default resolution mechanism and the context-based resolution (with k = 4). In

m4 , make, and SQLite, the termination time was reduced by 26%, 13%, and 62%

respectively. In apr , the number of reduced resolution queries was minor, therefore

the termination time was not affected. Note that the reduction in termination time

depends not only on the number of reduced queries, but also on the relative proportion

of resolution time: If the resolution time is already low, then reducing the number of

resolution queries is likely to result in a minor improvement. When the resolution time

is high, a significant speedup can be achieved even with a minor reduction in the number

of resolution queries.

In general, using the highest value for k (or a full-context abstraction with k =∞) is

not guaranteed to be beneficial. If the value of k is too high, our context-based resolution

might skip relevant memory objects, which will result in an incomplete resolution. In

that case, it will resort to the default resolution mechanism.

Context-based resolution reduces the number of resolution queries and speeds up

the analysis in most of the cases.

3.4.2.2 Reusing Segments

Here we further investigate the impact of reusing segments (Section 3.2.3.3). We use

the same benchmarks as in Section 3.4.2, and run each of them with the DFS search

heuristic and the deterministic memory allocator.

This optimization attempts to achieve speedup by improving the query caching,

i.e., reducing the number of queries which are actually passed to the SMT solver. The

impact of reusing segments can be seen in columns None and RS of Table 3.5. In

m4 and apr , the termination time was reduced by 85% and 17% respectively, while in

make and SQLite the reduction was relatively small with 3% and 8% respectively. As

was mentioned before, the benchmarks in this experiment use hash tables with buckets,

which are typically implemented using arrays of pointers. In the case of m4 and apr , the

hash tables are not modified after their initialization, so the corresponding SMT arrays

are identical for all the symbolic states, which allows efficient caching when segments

are reused. In the case of make and SQLite, the hash tables are modified after the
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Table 3.5: Termination time in hh:mm in different modes: None: without any
optimizations, K-Context: with context-based resolution (for k = 4), RS: with reusing
segments, and All: with both optimizations.

Program Termination Time
None K-Context RS All

m4 03:34 02:37 00:33 00:26

make 04:14 03:42 04:06 03:35

SQLite 04:16 01:37 03:58 01:36

apr 00:23 00:23 00:19 00:19

initialization, so when different symbolic states update a hash table by adding a new

element, the corresponding SMT arrays are different as well, which makes the reuse

mechanism less efficient.

Reusing segments can significantly speedup the analysis.

3.4.3 Intra-object Partitioning

In this experiment, we investigate the impact of the splitting approach (Section 3.2.4)

on the termination time and the number of explored paths. We use programs that

generate array-theory constraints with large arrays. For each program we compare the

results obtained by vanilla KLEE and the splitting approach with different partitioning

strategies. When the splitting approach is used with a partitioning strategy Pn, a

memory object is split into smaller memory objects of size n. We use a split threshold

of 300 bytes, i.e., we split only memory objects whose size exceeds that given threshold.

We use the DFS search heuristic and the deterministic memory allocator.

The benchmarks in this experiment are: m4 , make, SQLite, apr , gas, and libxml2 .

Similarly to the experiments in Section 3.4.2, we achieve termination by running these

programs with a partially symbolic input, except for libxml2 which is run with a fully

symbolic input. In Section 3.4.2, the programs m4 and make (which were taken from

[73]) were run with decreased sizes for some of the arrays: In m4 , the hash table size

was decreased using one of the program’s command line flags (-H), and in make some of

the arrays were manually patched to have smaller sizes. In this experiment, we restore

the default array sizes in order to test the splitting approach with larger arrays.

Table 3.6 shows the termination time and the number of explored paths with both
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vanilla KLEE and the splitting approach (with different partitioning strategies).4 In

terms of termination time, the speedup of the splitting approach compared to vanilla

KLEE varies between 6.0×-13.4× in m4 , 1.2×-17.9× in make, 0.9×-4.0× in SQLite,

13.3×-132.1× in apr , 33.6×-43.8× in gas, and 1.0×-2.5× in libxml2 . Nevertheless, there

were two cases where the splitting approach performed worse: In SQLite, the size of

the split memory object is 328 bytes, therefore using P512 affects neither the memory

objects nor the number of explored paths, with the termination time being higher by

4% due to the overhead incurred by our addressing model. Running libxml2 with P32

resulted in a slightly higher termination time, mainly due to the increased number of

explored paths.

Table 3.7 shows the maximum size of a split memory object for each benchmark.

The sizes vary between roughly 500KB in gas and only 328 bytes in SQLite, which

shows that the splitting approach can be successfully applied with both large arrays

and relatively small ones.

The partitioning strategy used in the splitting approach directly affects the

termination time and the number of explored paths. When a memory object is split

according to some partitioning strategy, a more refined partitioning will (non-strictly)

increase the number of memory objects that a symbolic pointer can point to. Since we

are in the forking model, when we decrease n, i.e., refine the partitioning, the number of

resolved memory objects with Pn increases together with the number of explored paths.

In addition, when the partitioning is more refined, the number of memory objects grows,

which may slowdown symbolic pointer resolution. Nevertheless, using a more refined

partitioning creates smaller SMT arrays, which makes constraint solving easier. This

tradeoff between the complexity of the constraints on one side, and the number of

explored paths and the resolution time on the other side, eventually determines the

termination time with a given partitioning strategy.

When trying to understand the impact of a given partitioning strategy, we observed

two main patterns. When n is decreased in SQLite and apr , the overhead of forks and

resolution remains relatively low and SMT arrays also become smaller, which results

in better overall performance. In other benchmarks (m4 , make, gas, and libxml2 ),

decreasing n toward small values (32) results in a slowdown due to an increased number

4In one of the cases, when make was analzed with the partitioning strategy P32, we had to use the
standard (libc) memory allocator and not the deterministic one used in all other experiments, since the
latter does not reuse addresses and ran out of memory.
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Table 3.6: Termination time in hh:mm:ss and number of explored path with vanilla
KLEE and different splitting strategies.

Program Mode Time Paths

m4 Vanilla 00:39:46 82
P512 00:06:40 82
P256 00:02:58 101
P128 00:03:16 145
P64 00:03:50 257
P32 00:05:08 485

make Vanilla 09:04:13 3386
P512 01:13:50 4488
P256 00:30:26 6088
P128 00:39:47 10136
P64 01:53:15 21304
P32 07:44:19 55928

SQLite Vanilla 00:18:38 147
P512 00:19:26 147
P256 00:15:21 213
P128 00:09:46 259
P64 00:07:26 355
P32 00:04:38 465

apr Vanilla 01:01:38 961
P512 00:04:39 1024
P256 00:02:21 1225
P128 00:01:16 1444
P64 00:00:47 1849
P32 00:00:28 2025

gas Vanilla 05:18:26 5
P512 00:07:16 5
P256 00:07:25 5
P128 00:07:43 5
P64 00:08:23 5
P32 00:09:29 5

libxml2 Vanilla 01:22:27 4413
P512 00:33:26 5003
P256 00:33:38 5230
P128 00:39:13 5821
P64 00:59:06 6885
P32 01:23:00 8718
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Table 3.7: Maximum size of split memory objects.

Program Size

m4 4072
make 8192
SQLite 328
apr 8192
gas 524411
libxml2 4096

of explored paths. In make and m4 , increasing n too much toward high values (512)

results in a slowdown as well, due to the growing complexity of constraints over larger

SMT arrays. The sweet spot value for n lies somewhere between 64 and 256.

The splitting approach achieves a significant speedup in programs that generate

complex array-theory constraints.



Chapter 4

Address-Aware Query Caching for

Symbolic Execution

This chapter is based on the results published in [114].

4.1 Introduction

Symbolic execution often spends most of its time on solving queries [87], therefore the

effectiveness of the SE engine depends on the effectiveness of its underlying SMT solver.

To reduce the cost of constraint solving, SE engines perform their own optimizations

before invoking the SMT solver. Among these optimizations are: caching [39, 103, 119],

slicing [39, 103, 119], expression rewriting [39, 91], and logical implications [71].

Symbolic executors generate a large number of queries, so one of the most vital

optimizations is query caching. In this optimization, queries are transformed to a

normal form, which is used as a key for maintaining a cache. Various normalization

strategies [39, 103, 119] have been proposed, including: canonization, renaming

variables, rewriting equalities, and arithmetic simplifications.

Unfortunately, there are still some types of queries that are inefficiently handled by

existing query caching approaches. An example for that is address-dependent queries,

i.e., queries that involve address expressions. Such queries are generated in various SE

engines such as KLEE [39], ANGR [103], Manticore [85], and SAGE [56].

To illustrate when such queries are encountered, consider the program in Figure 4.1.

When the value of array[i][j] is read at line 17, the corresponding expression depends

on the content of array, as it is accessed with the symbolic offset i. The contents of

56
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1 #define N (2)
2 #define MAGIC (7)
3
4 int z; // symbolic
5 if (z > 0) {
6 /* allocate objects... */
7 }
8
9 char **array = calloc(N, sizeof(char *));

10 for (unsigned int i = 0; i < N; i++) {
11 array[i] = calloc(N, 1);
12 }
13 array[0][1] = MAGIC;
14
15 unsigned int i; // symbolic, i < N
16 unsigned int j; // symbolic, j < N
17 if (array[i][j] == MAGIC) {
18 /* do something... */
19 }

Figure 4.1: Motivating example.

array are the address values assigned at line 11, so the query generated for the branch at

line 17 is address-dependent. Due to the branch at line 5, the same flow described above

is executed again while exploring a different execution path. Depending on the utilized

allocation scheme, the addresses assigned at line 11 by the other symbolic state may be

different from those assigned by the previously discussed symbolic state. Therefore, the

queries generated at line 17 by these two symbolic states would be syntactically different,

although they are clearly equisatisfiable. Since existing query caching techniques rely

on some form of syntactic normalization, an opportunity to reuse the result of the first

query for the second one would be missed. Notice that even if each symbolic state had

its own local memory allocator, synchronizing the assigned addresses would be difficult:

For example, if additional memory objects are allocated at line 6, then the two symbolic

states forked at line 5 are likely to produce different allocation sequences.

We introduce a novel query caching technique that can efficiently handle address-

dependent queries. Such queries are prevalent in programs that dereference symbolic

pointers, i.e., pointers whose values depend on the symbolic input. A prolific source for

such symbolic pointers are programs where the symbolic input propagates into a data

structure indexed by that input, as happens, for example, with hash tables.

At a high level, we utilize the relocatable addressing model proposed in Section 3.2.1

to modify the representation of the expressions generated by the SE engine, such that

the base addresses returned by the memory allocator are symbolic values. This allows
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us to track the propagation of address values to the symbolic states and the resulting

queries, and distinguish address expressions from non-address expressions. Using this

model, we are able to detect address-dependent queries which are not syntactically

equivalent but are nonetheless equisatisfiable, thus improving the cache utilization.

Main contributions:

1. We propose a novel query caching technique, that allows efficient handling of

address-dependent queries.

2. We provide a formal proof for the correctness guarantees of our technique.

3. We provide a KLEE-based implementation, which we make available as open-

source.1

4. In our evaluation, we empiricallly validate the correctness of our technique, and

show that it can achieve significant performance gains.

Outline. In Section 4.2, we provide background on standard query caching.

In Section 4.3, we present our query caching approach for address-dependent queries.

In Sections 4.5 and 4.6, we discuss our implementation and evaluation, respectively.

4.2 Standard Query Caching

To understand why efficiently caching address-dependent constraints is challenging, we

first give some background on the existing query caching approaches in modern analysis

tools [33, 38, 39, 103, 119].

SE engines [38, 39, 103] and other analysis frameworks [33, 119] use some form of

syntactic query caching to improve the performance of constraint solving. Each query

is transformed to an equivalent normal form according to some syntactic rules, and this

normal form is used as a key for maintaining the cache: In a case of a miss, the query

is solved using the SMT solver and its result is memoized. Otherwise, the result of a

previously solved query is reused without invoking the SMT solver. The normalization

is typically achieved via variable renaming, canonization, arithmetic simplification, and

equality rewriting.
1https://github.com/davidtr1037/klee-aaqc

https://github.com/davidtr1037/klee-aaqc
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𝑆0

𝑆4

𝑆1

𝑆3

𝑧 ≤ 0𝑧 > 0

if (z > 0)

if (array[i][j] == 7)

𝑚𝑜2 𝑚𝑜3

𝑆6

𝑆2

𝑆5

𝑚𝑜5 𝑚𝑜6

resolve array[i][j] 

Figure 4.2: The execution tree of the program from Figure 4.1.

Table 4.1: The queries generated at line 17 in different states with the two addressing
models. The upper section corresponds to the standard addressing model, and the lower
section corresponds to the symbolic addressing model.

State Symbolic Pointer Query AC

s3 p1 ≜ select4(store4(store4(a1, 0, 200), 4, 300), i ∗ 4) + j q1 : i < 2 ∧ j < 2 ∧ 200 ≤ p1 < 202 ∧ select(a2, p1 − 200) = 7 -
s4 q2 : i < 2 ∧ j < 2 ∧ 300 ≤ p1 < 302 ∧ select(a3, p1 − 300) = 7 -
s5 p2 ≜ select4(store4(store4(a1, 0, 500), 4, 600), i ∗ 4) + j q3 : i < 2 ∧ j < 2 ∧ 500 ≤ p2 < 502 ∧ select(a5, p2 − 500) = 7 -
s6 q4 : i < 2 ∧ j < 2 ∧ 600 ≤ p2 < 602 ∧ select(a6, p2 − 600) = 7 -

s3 p3 ≜ select4(store4(store4(a4, 0, β2), 4, β3), i ∗ 4) + j q5 : i < 2 ∧ j < 2 ∧ β2 ≤ p3 < β2 + 2 ∧ select(a2, p3 − β2) = 7 β2 = 200

s4 q6 : i < 2 ∧ j < 2 ∧ β3 ≤ p3 < β3 + 2 ∧ select(a3, p3 − β3) = 7 β3 = 300

s5 p4 ≜ select4(store4(store4(a4, 0, β5), 4, β6), i ∗ 4) + j q7 : i < 2 ∧ j < 2 ∧ β5 ≤ p4 < β5 + 2 ∧ select(a5, p4 − β5) = 7 β5 = 500

s6 q8 : i < 2 ∧ j < 2 ∧ β6 ≤ p4 < β6 + 2 ∧ select(a6, p4 − β6) = 7 β6 = 600

For instance, consider the following two queries:

x < 1 ∧ x+ y + 4 < 7 x+ z + 1 < 4 ∧ x < 1

These queries are syntactically different, but they can be reduced to the same normal

form:

v0 < 1 ∧ v0 + v1 < 3

Therefore, if one of these queries was already solved, the result of the other one could

be deduced later if needed. This query caching mechanism is effective in practice, but

does not provide a complete method for determining if two formulas are equisatisfiable:

There are queries that are equisatisfiable, but which cannot be reduced to the same

normal form, as we exemplify in Section 4.3.

4.3 Address-Aware Query Caching

Our technique enables a more efficient caching of address-dependent queries. We

achieve that by using the relocatable addressing model proposed in Section 3.2.1, which
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modifies the representation of expressions in the symbolic state in a way that enables

distinguishing address expressions from non-address expressions. In the following

section, we show how this model helps to efficiently handle address-dependent queries.

4.3.1 Motivation

To illustrate the need for the relocatable addressing model, consider again the program

in Figure 4.1 whose execution tree is shown in Figure 4.2. The analysis starts with the

initial state s0, which executes the symbolic branch at line 5 and forks. Then each of the

forked states, s1 and s2, allocates a two-dimensional matrix using an array of pointers

(line 9), and initializes one of the cells to some constant value MAGIC (line 13). Suppose

that the memory objects allocated in state s1 at lines 9 and 11 are:

mo1 ≜ (100, 8, a1), mo2 ≜ (200, 2, a2), mo3 ≜ (300, 2, a3)

where mo1 corresponds to the array of pointers array and the two others correspond

to the buffers allocated inside the loop. At line 17, where the value of array[i][j] is

read in s1, the value of the accessed pointer is:

p1 ≜ select4(store4(store4(a1, 0, 200), 4, 300), i ∗ 4) + j

which is also shown under the column Symbolic Pointer of Table 4.1. This is a symbolic

pointer that can refer to two memory objects: mo2 and mo3. As a result, the execution

is forked again, resulting in two new symbolic states: s3 and s4. When we follow s3, the

symbolic state that resolves p1 to mo2, the query generated for the branch condition at

line 17 is q1, which is shown in column Query of Table 4.1. Note that this query does

not contain the constraint z > 0, since the expression of the branch condition at line 17

does not depend on the symbolic value z. This optimization is known as slicing, and it

is widely used in SE engines [39, 103].

As for s2, the other symbolic state forked at line 5, suppose that the memory objects

allocated at lines 9 and 11 are:

mo4 ≜ (400, 8, a4), mo5 ≜ (500, 2, a5), mo6 ≜ (600, 2, a6)

Similarly, s5 executes the same flow as s2, and the query generated for the branch
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condition at line 17 is q3. The concrete base addresses assigned in s3 and s5 are different,

so the mentioned queries (q1 and q3) cannot be reduced to the same normal form.

Therefore, standard query caching cannot reuse the result of the first query for the

second one.

Note, however, that these two queries (q1 and q3) are equisatisfiable, and this is not

a coincidence. The query generated at line 17 is address-agnostic: For any sequence of

allocations occurring on a path that leads to line 17, the generated query is guaranteed

to be equisatisfiable to the queries above.

In order to detect equisatisfiable address-dependent queries, we need to know

which expressions in the constraints are address expressions. Since the standard

addressing model encodes pointer values as integers, detecting these address expressions

is hard without additional annotations. However, that can be easily achieved with the

relocatable addressing model: In this model, the assigned base addresses are symbolic

values, so if the normal form of one query can be obtained from the normal form of

another query by renaming the symbolic base addresses, and the sizes of the memory

objects corresponding to the matched symbolic base addresses are equal, then these

queries are equisatisfiable.

Using the relocatable addressing model in our example, instead of the queries q1

and q3, we generate q5 and q7 in conjunction with the corresponding address constraints

shown in column AC of Table 4.1. Since q7 can be obtained from q5 by renaming β2

to β5 and β3 to β6, and the sizes of mo2 and mo3 match those of mo5 and mo6, then

these two queries can be determined as equisatisfiable.

Table 4.1 shows the query generated at line 17 by each of the four symbolic

states, with both the standard addressing model and the symbolic one. A similar

equisatisfiability observation can be made regarding the queries q6 and q8 that are

generated by s4 and s6, respectively.

4.3.2 Algorithm

Our algorithm for determining the equisatisfiability of two queries is given in

Algorithm 2. We assume that the expressions e1 and e2 passed to the function equi-sat

are represented using the relocatable addressing model, i.e., base addresses are symbolic

values. We also assume that these expressions are already in a canonical form, and that

they are represented using an abstract syntax tree (AST) with support for: integers,
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Algorithm 2 Equisatisfiability Algorithm.
1: function equi-sat(e1, e2,m)
2: if e1 and e2 are unary expressions
3: op1(e

′
1)← e1, op2(e

′
2)← e2

4: return op1 = op2 and equi-sat(e′1, e′2,m)
5: ...
6: if e1 and e2 are atomic symbolic base addresses
7: s1 ← get-size(e1), s2 ← get-size(e2)
8: return add-pair(m, e1, e2) and s1 = s2
9: if e1 and e2 are atomic arrays

10: K (c1)← e1, K (c2)← e2
11: return c1 = c2
12: if e1 and e2 are store expressions
13: store(a1, i1, v1)← e1, store(a2, i2, v2)← e2
14: return equi-sat(a1, a2,m) and equi-sat(i1, i2,m) and equi-sat(v1, v2,m)
15: return false

symbolic values, unary and binary operations, select and store operations, etc.

The algorithm is almost identical to a standard recursive equality checking routine,

except for two main cases:

Symbolic Base Addresses. We use the bidirectional map m, to compute a

bijection between the symbolic base addresses in e1 and e2, if such bijection exists.

First, we update at line 8 the map m with the new pair (e1, e2) using the function

add-pair , which returns true if the bijection property is preserved, and false otherwise.

Then, if add-pair succeeds, we take the sizes of the memory objects corresponding to

e1 and e2 (fetched at lines 7), and check their equality.

Arrays. We assume that an atomic array, i.e., an array without store’s, is an array

whose cells are initialized to some constant (Section 2.1). If e1 and e2 are atomic arrays

(line 9), then we check if they are initialized with the same constant. In the case of

store expressions (line 12), we perform a recursive check on the corresponding arrays,

indices, and values.

In the context of a given symbolic state, every expression e induces an address space,

which is defined by the memory objects whose symbolic base addresses appear in e. If

two address spaces contain the same number of memory objects, and for every memory

object in one address space, there exists a memory object with the same size in the

other address space (and vice versa), then these two address spaces are considered to

be isomorphic. If equi-sat succeeds, then in particular, we establish that the address

spaces induced by e1 and e2 are isomorphic.
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1 char *p = malloc(10), *q = malloc(50);
2 if (p > q)
3 ...
4 if (*(p + 100) == *q)
5 ...

Figure 4.3: An ill-behaved program due to unsafe pointer arithmetic.

4.3.3 Limitations

The approach described in Section 4.3.1 cannot be applied to queries which are not

address-agnostic, i.e., queries where the ordering of the memory objects in the address

space affects the satisfiability. Such queries may be generated internally by the SE

engine, or when analyzing programs that incur undefined behavior.

Undefined Behavior. Indeed, there are programs whose execution depends on

the relationships between the numerical address values. For example, the result of the

branch statement at line 2 from Figure 4.3 clearly depends on the allocation scheme

implemented by the C standard library. For this reason, the behavior of such statements

is commonly considered to be undefined. Note that not all pointer comparisons are

necessarily address-dependent. Comparisons such as p + i < p + j have well-defined

semantics, and comparisons between pointers within the same memory object are

commonly used and introduced as part of standard compiler optimizations. However, it

is known that checking the presence or absence of undefined behavior in a given program

is hard [70].

Similarly, pointer arithmetic can also expose address dependency, as demonstrated

in the program from Figure 4.3: The branch condition at line 4 holds, for example,

when p = 100 and q = 200, but it may be false under other address assignments. Again,

verifying the absence of out-of-bounds pointer arithmetic is too hard in general [62, 118].

Symbolic executors can detect such bugs under some address assignments, but not all,

and definitely cannot prove their absence.

In the presence of such undefined behavior, our query caching approach presented

in Section 4.3.1 may exhibit unsoundness or incompleteness. However, we would like to

point out that in these cases symbolic executors cannot provide such guarantees anyway,

although our approach can exacerbate the problem.

Engine-Internal Queries. The SE engine itself may internally generate queries

which are not address-agnostic. For example, when KLEE resolves a symbolic pointer
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p, it generates the query β ≤ p < β + s in order to check if p may refer to the memory

object (β, s, a). To optimize the search procedure, it generates an additional validity

query of the form:

p < β + s

to determine if the search can be completed without scanning additional memory

objects.

Clearly, the latter query is not address-agnostic. Let p be the symbolic pointer

encountered at line 17 from Figure 4.1:

p ≜ select4(store4(store4(a1, 0, β2), 4, β3), i ∗ 4) + j

If the address constraints are:

β2 = 200, β3 = 300, β = 700

then the query is valid, which is not the case if β = 100.

In the case of engine-internal queries, the SE engine itself generates the queries, so

it is easy to tag those and locally disable the query caching optimization in such cases.

In Section 4.4, we formulate the sufficient conditions under which address-dependent

queries generated by the SE engine are guaranteed to be address-agnostic, and prove

the correctness of our query caching approach for such queries.

4.4 Correctness

In this section, we justify the query caching approach described in Section 4.3 by arguing

that from the satisfiability or unsatifiability of a given query follows the same result

under any isomorphic address spaces.

We consider formulas in array theory [32, 58], with one-dimensional arrays whose

index sort is Int , as these are the ones that occur in satisfiability queries during symbolic

execution of low-level program representations (e.g., LLVM IR). The theory includes

the interpreted function symbols: select , store, and K (Section 2.1).

Definition 4.4.1. Let L1 be the language of unquantified formulas in the array theory

with two sorts for scalars: Int and Ptr . The Int sort admits all the linear integer
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arithmetic operations. The Ptr sort admits equality, a special constant null , and a

pointer arithmetic operator:

+ : Ptr× Int→ Ptr

The intended interpretation for Ptr will therefore be numeric, and we assume it to

be isomorphic to N. In particular, null is interpreted as 0, + is interpreted as addition,

and we assume that:

(p+ n) +m ≡ p+ (n+m)

Ptr terms can be tested only for equality (or inequality), and not for order. In addition,

Ptr and Int terms cannot be mixed freely in L1 formulas, for example, comparing

pointers with integers is prohibited.

Definition 4.4.2. An address space is a set of disjoint integer intervals, canonically

written as S =
{
[ci, ei]

}
1≤i≤r

where 0 < ci ≤ ei. The size of an interval [c, e] is defined

as follows: ∣∣[c, e]∣∣ ≜ e− c + 1

We are interested only in models where the interpretation of every uninterpreted

constant p : Ptr is either null or a base address, i.e., a beginning of an interval. This is

expressed in the following definition:

Definition 4.4.3. Let m be a model and S be an address space. We say that m respects

S if the following holds:

• For every uninterpreted constants p1, p2 : Ptr, if p1 ̸= p2 then:

m(p1) = m(p2) = 0 or m(p1) ̸= m(p2)

• For every uninterpreted constant p : Ptr, if m(p) ̸= 0 then there exists an interval

[c, e] ∈ S such that m(p) = c.

Definition 4.4.4. We say that a term p : Ptr respects an address space S in a model

m if the following holds:

• If p is an uninterpreted constant and m(p) ̸= 0, then there exists an interval

[c, e] ∈ S such that m(p) = c.

• If p ≜ a+n, where a : Ptr and n : Int, then there exists an interval [c, e] ∈ S such

that m(a) ∈ [c, e] and m(a+ n) ∈ [c, e].
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A formula φ in L1 respects an address space S in a model m, when all its sub-terms of

sort Ptr respect it in m.

Definition 4.4.4 is crucial to our treatment of formulas that contain pointer

arithmetic operations: It means that whenever such operation occurs in φ, it may

not take an address that resides inside one interval and create an address that resides

in a different interval.

Definition 4.4.5. By writing m1 =Int m2 we denote that for every uninterpreted

constant t : Int,2 it holds that:

m1(t) = m2(t)

Definition 4.4.6. Let m1 and m2 be models and S1 and S2 be address spaces. We say

that m1 and m2 are consistent w.r.t. S1 and S2 if the following holds:

• For every p : Ptr, m1(p) = 0 ⇐⇒ m2(p) = 0

• For every p : Ptr, if m1(p) ∈ [c1, e1] and m2(p) ∈ [c2, e2], where [c1, e1] ∈ S1 and

[c2, e2] ∈ S2, then
∣∣[c1, e1]∣∣ = ∣∣[c2, e2]∣∣.

Definition 4.4.7. A formula φ in L ⊇ L1 is address-agnostic if for every two address

spaces S1 and S2, and for every two models m1 and m2, the following holds:

If:

• m1 =Int m2

• m1 and m2 respect S1 and S2, respectively

• m1 and m2 are consistent w.r.t. S1 and S2

• φ respects S1 in m1

then:

• m1 |= φ ⇐⇒ m2 |= φ

Lemma 4.4.8. If φ1 and φ2 are formulas in L ⊇ L1 which are address-agnostic, then

¬φ1, φ1 ∧ φ2, φ1 ∨ φ2 are address-agnostic as well.

The proof is in Appendix A.1.1.
2We write t : T to denote that the sort of the term t is T .
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Lemma 4.4.9. Every formula φ in L1 is address-agnostic.

The proof is in Appendix A.1.2.

Lemma 4.4.9 states that in the context of L1, the concrete values of interval

boundaries in the address space has no effect on the truth value of the formula, and they

can be freely rearranged into any other locations. However, L1 is not expressive enough

for our purposes, as it allows construction of pointer values from integers but not vice

versa, thus preventing the use of terms such as select(a, p1 − p2), which are routinely

generated by the SE engine for the representation of pointer dereference operations.

Definition 4.4.10. Let L2 be the extension of L1 with a second pointer arithmetic

operation:

− : Ptr× Ptr→ Int

Ptr still corresponds to a numeric domain so that the subtraction operation is

meaningful. In particular, we assume that:

(p+ n)− (p+m) ≡ n−m

We will use p1 < p2, p1 ≤ p2 as abbreviations for p1 − p2 < 0, p1 − p2 ≤ 0, respectively.

In order for our formulas to still be address-agnostic, we would have to avoid terms

such as p1 − p2 (where p1 and p2 are Ptr terms), since these may take different values

depending on the relative positioning of the intervals containing p1 and p2, if they

happen to reside in different address intervals.

Definition 4.4.11. Let p : Ptr be a term in L1, a : Ptr be an uninterpreted constant,

and n : Int be a term in L1. The guard constraint of p over a and n, denoted by

γ(p, a, n), is given by the formula:

p ≥ a ∧ p < a+ n

Note that Definition 4.4.7 assumes models and address spaces that are respected by

the formula, so under such assumptions the term a + n cannot cross the boundaries

between intervals.

Lemma 4.4.12. A guard constraint is address-agnostic.
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The proof is in Appendix A.1.3.

Lemma 4.4.13. Let ψ be a formula in L2, t : Int be a term in L2, and n : Int be a

term in L1. If t ≡ n and ψ[n/t] is address-agnostic, then ψ is address-agnostic as well.

The proof is in Appendix A.1.4.

Lemma 4.4.14. Let γ ∧ ψ be a formula in L2, where γ is a guard constraint, i.e.,

γ(p, a, n), and ψ is in L2. If p, p′ : Ptr, and there exists k : Int such that:

• γ |= p− p′ = k

• ψ[k/(p− p′)] is address-agnostic

then γ ∧ ψ is address-agnostic.

The proof is in Appendix A.1.5.

As an example for the application of Lemma 4.4.14 consider again the program from

Figure 4.1. The access of array[i][j] triggers a dereference of the symbolic pointer p:

p ≜ select4(store4(store4(K (0), 0, β2), 4, β3), i ∗ 4) + j

This pointer is resolved to mo2 ≜ (β2, 2, a2) using the following query:

0 ≤ i < 2 ∧ 0 ≤ j < 2 ∧ p ≥ β2 ∧ p < β2 + 2

After the resolution, the query generated for the branch at line 17 is given by:

φ ≜ 0 ≤ i < 2 ∧ 0 ≤ j < 2 ∧ p ≥ β2 ∧ p < β2 + 2 ∧ select(a2, p− β2) = 7

Here:

γ ≜ p ≥ β2 ∧ p < β2 + 2, ψ ≜ 0 ≤ i < 2 ∧ 0 ≤ j < 2 ∧ select(a2, p− β2) = 7

It clearly holds that:

γ |= p− β2 = j

and the substitution ψ[j/(p− β2)] results in:

0 ≤ i < 2 ∧ 0 ≤ j < 2 ∧ select(a2, j) = 7



4.4. CORRECTNESS 69

which is a formula in L1 (and therefore address-agnostic), so we can apply Lemma 4.4.14

to conclude that φ is address-agnostic.

The only sources of pointer subtraction terms are program statements and

representations of pointer dereferences. We assume that the program is well-behaved,

i.e., subtraction cannot be applied between pointers that correspond to different memory

objects, and boundaries between memory objects cannot be crossed using pointer

arithmetic. Under these assumptions we can formulate the following theorem:

Theorem 4.4.15. Let pc be some path constraints generated by the SE engine. Then

pc is address-agnostic.

The proof is in Appendix A.1.6.

Using Theorem 4.4.15, we can show that our query caching algorithm (Section 4.3) is

correct. Let q1 ≜ φ1∧ac1 be a cached query, and let q2 ≜ φ2∧ac2 be a new query whose

satisfiability we want to determine, where ac1 and ac2 are some address constraints.

Suppose that our algorithm determined that q1 and q2 are equisatisifiable: φ1 and φ2

are identical up to renaming of symbolic base addresses (uninterpreted constants of sort

Ptr), and the address spaces induced by ac1 and ac2 are isomorphic. Now, we need to

show that q1 and q2 are indeed equisatisifiable.

Since φ1 and φ2 are identical up to renaming, we can assume that they are actually

identical, while the only difference comes from the address constraints:

q1 ≜ φ ∧ ac1, q2 ≜ φ ∧ ac2

If q1 is satisifiable, then φ is satisfiable, so there exists a model m1 such that m1 |= φ1.

Now, we construct a model m2 that is identical to m1 except for the interpretation

of symbolic base addresses, which is set according to the address constraints ac2. We

assume that the program is well-behaved, so in particular, the boundaries between

intervals cannot be crossed using pointer arithmetic. Therefore, φ respects the address

space induced by ac1 in m1. In addition, m1 and m2 satisfy the preconditions

of Definition 4.4.7. Since we assume that φ is address-agnostic, then we conclude that

m2 |= φ. The interpretation of the symbolic base addresses in m2 are consistent with

the address constraints ac2, so we conclude that φ ∧ ac2, i.e., q2, is satisfiable as well.

Similarly, we can show that if q2 is satisfiable then so is q1.

Remark. Our correctness arguments hold also for formulas where a pointer is
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allowed to refer to multiple memory objects, as happens in tools that apply state

merging [66, 103], since the address-agnostic property is preserved under disjunction.

The notion of the red zone (Section 2.2) can be easily incorporated into our correctness

arguments and requires no modifications to the proof: It is simply sufficient to consider

each interval to consist of the padding block and the address block allocated for the

respective memory object. Since the size of the padding is constant for all allocations,

the resulting address spaces will still be isomorphic.

4.5 Implementation

We implemented our query caching approach on top of KLEE [39], configured with

the STP [58] solver. In order to use the relocatable addresses model, we relied on the

implementation from Section 3.3.

In KLEE, the existing query cache is implemented using a hash table of queries.

To make the lookup and insert operations efficient, a hash value is maintained for each

query (and each expression), which is then used as a key for that hash table. Then, the

bucket retrieved with that key is scanned to find the matching query based on syntactic

equality. To enable efficient caching for our query caching approach as well, we maintain

an additional hash value for each expression, which captures its structure regardless of

the symbolic base address expressions. More technically, when we compute this hash

value, we set the hash value of symbolic base addresses to a pre-defined constant. For

example, the following queries will have the same hash value:

select(store4(a, 1, β2)) = 0 select(store4(a, 1, β3)) = 0

As discussed in Section 4.3, our approach does not apply to queries whose

satisfiability depends on the ordering of the memory objects in the address space.

When such queries are not engine-internal, i.e., generated as a result of a branch in

the program, our approach may lead to incorrect results. We note, however, that such

incorrect results can be pruned later by running dynamically the generated test cases.
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4.6 Evaluation

In our experiments, we evaluate our address-aware query caching approach (AA)

against the standard approach used in vanilla KLEE (Base). The challenge of caching

address-dependent queries was partially addressed using the segment reuse heuristic

(Section 3.2.3.3), which reuses previously allocated base addresses when a new segment

is allocated, and this way increasing the chance for cache hits. Therefore, we evaluate

our approach under two memory models: The forking memory model (FMM), i.e.,

vanilla KLEE, and the dynamically segmented memory model (DSMM) described

in Section 3.2.3.2. When applying AA under DSMM, we disable the segment reuse

heuristic, and when applying Base under DSMM, we enable that heuristic.

Our evaluation is structured as follows: In section 4.6.1 we present our benchmarks.

In section 4.6.2 we provide an empirical validation for our approach. In Section 4.6.3 we

show the effectiveness of our approach on benchmarks that generate address-dependent

queries. In Section 4.6.4 we measure the overhead of our approach on benchmarks

that do not generate address-dependent queries, where our approach is not expected to

produce speedups. Our replication package is available at https://doi.org/10.6084/

m9.figshare.13042277.

Experimental Setup. We performed our experiments on a machine running

Ubuntu 16.04, equipped with an Intel i7-6700 processor and 32GB of RAM.

4.6.1 Benchmarks

In our experiments, we used the following benchmarks: GNU m4 [81] (80K SLOC) is a

macro processor included in many Unix-based systems. GNU make [82] (28K SLOC) is

a tool which controls the generation of executables and other non-source files, also widely

used in Unix-based systems. SQLite [108] (127K SLOC) is one of the most popular SQL

database libraries. Apache Portable Runtime [23] (60K SLOC) is a library used by the

Apache HTTP server that provides cross-platform functionality for memory allocation,

file operations, containers, and networking. The libxml2 [6] (197K SLOC) library is an

XML parser and toolkit developed for the Gnome project. The expat [4] (23K SLOC)

library is a stream-oriented XML parser, used in many open-source projects including

Mozilla, Perl, Python and PHP. GNU bash [2] (106K SLOC) is the well-known Unix shell

written for the GNU project. The json-c [5] (7K SLOC) library is used for encoding and

https://doi.org/10.6084/m9.figshare.13042277
https://doi.org/10.6084/m9.figshare.13042277
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decoding JSON objects. GNU Coreutils [63] (188K SLOC) is a collection of utilities for

file, text, and shell manipulation. The libosip [7] (11K SLOC) library is used for parsing

SIP messages. The libyaml [1] (9K SLOC) library is used for parsing and emitting data

in the YAML format.

In Section 4.6.3 we evaluate our approach on a set of terminating programs that

generate address-dependent queries. Such queries are typically generated in the presence

of symbolic pointers, which are created, for example, when data structures such as

hash tables are indexed using a symbolic value as key. Our benchmarks consist of both

whole-program utilities (m4 , make, bash) and libraries (SQLite, apr , libxml2 , expat and

json-c). Four of our benchmarks (m4 , make, SQLite, and apr) were used in previous

work related to symbolic pointers [73]: In m4 and make, which are language-processing

utilities, hash tables are used to store the values of variables, functions, and strings.

To avoid the analysis of these programs from getting stuck in the early stages and to

achieve its termination, these programs are run with a partially symbolic input. The

test driver in apr focuses on the runtime’s hash table API, and the test driver in SQLite

creates database triggers using concrete and symbolic SQL queries. Our four additional

benchmarks are libxml2 , expat , bash, and json-c: As was done in the cases of m4 and

make, we ran bash with a partially symbolic input in order to reach the deeper parts of

the code that operate on the various tables that store variables, strings, and functions.

In libxml2 and expat we built test drivers that parse symbolic HTML and XML inputs,

respectively. In json-c we built a test driver that constructs a JSON object which

internally uses hash tables.

In Section 4.6.4 we evaluate our approach on a set of programs that do not

generate address-dependent queries: We chose 10 utilities from coreutils that behave

deterministically across multiple runs, and built test drivers for the main parsing APIs

in both libosip and libyaml .

4.6.2 Empirical Validation

In this experiment, we provide an empirical validation for the correctness of our

approach using the following methodology: We ran KLEE on each of the benchmarks

with Base and AA, and as our approach (AA) must not affect the exploration, we

validated that both the number of explored paths and the achieved coverage are indeed

identical in both runs. When running with AA, we additionally checked for each cached
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Table 4.2: Classification of queries and their amounts.

Program Total C1 C2 C3

m4 14,022 9,589 9,127 6,394

make 2,565,399 2,477,145 90,027 69,535

SQLite 26,990 18,407 15,589 13,783

apr 15,013 8,960 8,960 8,448

libxml2 708,101 410,789 347,420 347,420

expat 1,797,033 945,192 102,903 102,903

bash 54,078 19,051 10,840 7,860

json-c 28,476 17,484 17,263 14,311

query that its cached result is correct by simply comparing it with the result reported

by the SMT solver. We performed this experiment using both memory models (FMM

and DSMM).

4.6.3 Performance

In this experiment, we compare the performance of two query caching approaches: Base

and AA. In the default configuration of KLEE, two constraint solving heuristics are

used: standard query caching (Base) and counter-example (CEX) caching. Therefore, in

order to have a complete comparison against vanilla KLEE, we enable the CEX caching

in our experiments as well. For each approach, we run KLEE with the DFS search

heuristic and the deterministic memory allocator, until all the paths are explored. In

each run we record the following parameters: the number of queries reaching the SMT

solver, the termination time, the size of the query cache, and the memory usage.

Table 4.2 gives an insight into the type of queries generated by vanilla KLEE in

our benchmarks. In KLEE, the query caching heuristic handles only satisfiability and

validity queries, and does not handle model (assignment) queries. As discussed in

Section 4.3, not all the queries passed to the query caching heuristic can be handled

with our approach. Column Total shows the total number of queries generated during

the analysis. Column C1 shows the number of queries passed to the query caching

heuristic. Column C2 shows the number of queries passed to the query caching heuristic

which can be handled by our approach. Column C3 shows the number of queries passed

to the query caching heuristic which can be handled by our approach and are address-

dependent. Note that the number of queries that pass through the cache but cannot be

handled by our approach, i.e., C2 − C3, is relatively low.
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Table 4.3: Number of queries with both approaches.

Program FMM DSMM
Base AA Base AA

m4 10,792 4,265 1,600 1,289
make 347,324 45,471 50,558 9,753
SQLite 5,622 4,681 14,563 12,993
apr 445 300 126 86
libxml2 124,782 6,118 124,782 6,118
expat 89,740 31,747 89,736 31,761
bash 8,538 4,479 7,542 4,098
json-c 15,364 5,246 2,757 1,523

Table 4.4: Termination time in hh:mm:ss.

Program FMM DSMM
Base AA Base AA

m4 00:13:16 00:04:59 00:19:17 00:14:55
make 06:46:44 02:30:51 03:56:42 01:47:23
SQLite 00:17:20 00:14:24 04:00:17 03:12:22
apr 00:57:33 00:39:05 00:20:20 00:13:39
libxml2 02:33:33 00:17:09 02:27:35 00:17:12
expat 00:26:02 00:23:19 00:25:13 00:23:06
bash 02:37:48 01:23:30 02:39:04 01:14:18
json-c 00:31:36 00:13:20 00:08:05 00:04:19

Table 4.3 shows the number of queries for each benchmark with the two approaches

and the different memory models. Here, we report the number of queries that reached

the SMT solver itself, i.e., those that were not handled by any of the constraint solving

heuristics (query caching or CEX caching). In FMM, the reduction in the number

of queries with AA varies between 1.20× (in SQLite) and 20.40× (in libxml2 ), and its

average is 5.11×. In DSMM, the reduction varies between 1.12× (in SQLite) and 20.40×

(in libxml2 ), and its average is 4.48×.

Table 4.4 shows the termination time for each benchmark with the two approaches

and the different memory models. In FMM, the speedup of AA compared to Base varies

between 1.11× (in expat) and 8.96× (in libxml2 ), and its average is 2.80×. Note that

the speedup depends not only on the reduction in the number of queries, but also on the

complexity of the queries. For example, the reduction in the number of queries in make

is roughly 4 times higher than in bash (7.63× vs. 1.90×), but the speedup in make is
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only 1.43× higher than in bash (2.70× vs 1.90×) as the queries in bash are more complex

due to larger SMT arrays, i.e., array constraints with more store expressions. In DSMM,

the speedup varies between 1.09× (in expat) and 8.59× (in libxml2 ), and its average

is 2.73×. The queries in expat are relatively simple compared to other benchmarks,

therefore the performance gains are less significant there.

Table 4.5 shows the size of the query cache for each benchmark with the two

approaches and the different memory models. In FMM, the reduction in the cache

size varies between 1.29× (in SQLite) and 24.68× (in libxml2 ), and its average is 6.06×.

In DSMM, the reduction varies between 1.18× (in SQLite) and 24.68× (in libxml2 ), and

its average is 4.93×.

In general, the number of explored paths in DSMM is guaranteed to be at most

as high as in FMM, and lower in programs whose analysis triggers symbolic pointers

with multiple resolutions. Therefore, in such programs there is also a reduction in the

number of queries and the cache size. However, in DSMM the queries are potentially

more complex, so the termination time is not necessarily lower compared to FMM, as

was shown in Section 3.4 and as can be seen in Table 4.4. The number of explored

paths in libxml2 and expat is identical with FMM and DSMM, but in expat there is a

slight difference in the number of queries (and cache size) due to non-determinism that

was introduced by the SMT solver in model (assignment) queries.

Figure 4.4 shows the memory usage for each of the benchmarks with the two

approaches under the different memory models. Clearly, the size of the query cache

affects the memory usage, i.e., a smaller cache should result in lower memory usage. In

benchmarks where the cache size is relatively low (m4 , SQLite, apr , bash and json-c),

the reduction in the cache size has little effect on the memory usage, which is roughly

the same with both approaches. However, in other benchmarks where the cache is

larger, the difference in the cache size results in larger difference in memory usage: For

example, when FMM is used, the memory usage in make and libxml2 is reduced by

roughly 800MB and 100MB, respectively.

The overall performance improvement with our approach suggests that there are

queries that are handled by our approach and are not handled by the CEX caching 3.

Therefore, the CEX caching should be seen as complementary to our approach.

3We internally experimented also with an optimized version of the CEX caching heuristic (using the
cex-cache-try-all option), which resulted in even better improvement for our approach.
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Table 4.5: The size of the query cache with both approaches.

Program FMM DSMM
Base AA Base AA

m4 11,780 3,493 1,631 1,341
make 348,210 41,927 51,064 12,404
SQLite 6,898 5,354 10,680 9,071
apr 496 279 130 81
libxml2 136,165 5,517 136,165 5,517
expat 92,383 34,226 92,382 34,226
bash 8,774 4,453 7,712 4,308
json-c 15,998 3,634 2,906 1,336

Our query caching approach (AA) increases the number of cache hits, speeds up

the analysis, and reduces the memory usage.

4.6.4 Overhead

In Section 4.6.3, we showed that our approach can improve the performance in programs

that generate address-dependent queries. However, our approach imposes additional

computational overhead due to two main reasons: maintaining additional symbolic

values for address expressions and substituting expressions (Section 3.2.1).

In this experiment, we show the runtime overhead of our approach in programs

that do not generate address-dependent queries: coreutils, libosip and libyaml . For

each program, we proceed with the following methodology under each of the memory

models: First, we ran KLEE for roughly one hour and recorded the number of executed

instructions, and then we re-ran the analysis up to the recorded number of instructions

with both of the approaches (Base and AA).

In FMM, with regards to termination time, our approach had a maximum overhead

of 17% (in libosip) and an average overhead of 6%. There was no significant difference

in memory usage between the two approaches, while our approach had an overhead

of 3%. Similarly to our query caching approach, DSMM relies on the relocatable

addressing model, which is the main source of overhead compared to vanilla KLEE

(FMM). Therefore, in DSMM, where the relocatable addressing model is used in both

of the approaches, the performance is almost identical in terms of time and space.

Similarly to Section 4.6.3, we validated that the number of explored paths is identical
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Figure 4.4: Memory usage (in MB) with both approaches under FMM (top) and
(DSMM) (bottom).

with both approaches, and performed an additional run for each program to validate

the correctness of our query caching approach w.r.t. the SMT solver.

In programs that do no generate address-dependent queries, our query caching

approach (AA) incurrs a reasonable overhead.



Chapter 5

A Bounded Symbolic-Size Model

for Symbolic Execution

This chapter is based on the results published in [113].

5.1 Introduction

In SE engines [39, 85, 103], the memory is modeled using a linear address space where

each memory object has a fixed concrete size. Such model imposes two main limitations:

When the inputs of the program under test are of variable size, e.g., array and strings,

the size of these inputs must be concretely determined before the analysis takes off.

Moreover, if an allocation of symbolic size is encountered during the analysis of the

program, then the size of that allocation has to be concretized. Therefore, while being

a natural design choice, the existing model may lose coverage and miss bugs.

As a motivating example, consider the code fragments taken from libosip [12] shown

in Figure 5.1, that depict two bugs found during our experiments. The osip_via_parse

function is responsible for parsing the VIA header of a request message in the Session

Initiation Protocol (SIP). It first looks for the leading occurrence of ’/’ (line 4), and

if found, it looks for the second occurrence of ’/’ (line 7). If the distance between the

two occurrences of the ’/’ characters is too small (line 10), then the parsing is stopped.

Otherwise, it validates that there is at least one space after the second occurrence of

’/’, and if that is the case, it skips additional spaces in the input (the loop in line 17).

The host pointer is incremented at the beginning of each iteration (line 18), so host

may point to the null-terminator of the string after the execution of the loop. When

78
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1 int osip_via_parse(osip_via_t *via, const char *hvalue) {
2 if (hvalue == NULL)
3 return OSIP_BADPARAMETER;
4 const char *version = strchr(hvalue, ’/’);
5 if (version == NULL)
6 return OSIP_SYNTAXERROR;
7 const char *protocol = strchr(version + 1, ’/’);
8 if (protocol == NULL)
9 return OSIP_SYNTAXERROR;

10 if (protocol - version < 2)
11 return OSIP_SYNTAXERROR;
12 ...
13 const char *host = strchr(protocol + 1, ’␣’);
14 if (host == NULL)
15 return OSIP_SYNTAXERROR;
16 if (host == protocol + 1) {
17 while (0 == strncmp(host, "␣", 1)) {
18 host++;
19 if (strlen(host) == 1)
20 return OSIP_SYNTAXERROR;
21 }
22 // out-of-bounds read
23 host = strchr(host + 1, ’␣’);
24 ...
25 }
26 ...
27 }
28 int osip_uri_parse_headers(osip_uri_t *url,
29 const char *headers) {
30 const char *equal = strchr(headers, ’=’);
31 // out-of-bounds read
32 const char *_and = strchr(headers + 1, ’&’);
33 ...
34 }

Figure 5.1: Bugs found in libosip 5.2.0.

that happens, the call to strchr at line 22 results in an out-of-bounds read, because

host + 1 points to an invalid memory. You may notice that this bug is reachable only

if the length of the input string is at least 5 (including the null-terminator). Therefore,

if the user decides to analyze this function with a shorter input, then the bug would

remain undetected. Picking a longer input string would help in the last case, but may

similarly lead to missed bugs in other cases. To see why, consider the second function

osip_uri_parse_headers. It searches the input string headers for the first occurrence

of ’=’ (line 30), and then independently looks for the first occurrence of ’&’ starting

from the second character of headers (line 32). Clearly, this results in an out-of-bounds

read if the input string is empty. Therefore, if the user decides to analyze this function

with a longer input, then the bug would remain undetected.

We propose a model that supports symbolic-size allocations, and thus enable the
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1 size_t n; // symbolic
2 char *p = calloc(n, 1);
3 char *q = calloc(10, 1);

Figure 5.2: Unbounded symbolic size.

analysis of programs with inputs whose size belongs to a range of values. Designing

an unbounded model, i.e., a model where the symbolic size of a memory object is

unconstrained, imposes several difficulties. SE engines typically use a linear address

space where the base addresses of memory objects are concrete, so address intervals of

distinct memory objects may overlap in the presence of unbounded memory objects.

To overcome this, one would have to adopt a two-dimensional address space where each

memory object has its own address space, or use symbolic base addresses with some

additional constraints that will ensure that address intervals do not overlap (Section 2.2).

Besides, SE engines use the QF_ABV logic fragment [29, 31, 59] to track the contents

of memory objects, meaning that the value at each offset within a memory object is

maintained explicitly. As a result, the analysis with big enough memory objects will not

be possible, as it will require an amount of memory unavailable on modern machines.

Therefore, we design a bounded model, where the symbolic size of memory objects

is bounded by a user-specified capacity. This model does not require changing the

modeling of the address space, thus can be easily integrated with existing SE engines.

Our model, however, increases the number of forks due to the introduction of

additional symbolic expressions, i.e., the symbolic sizes. This is particularly noticeable

in loops where the number of iterations depends on a symbolic size expression, leading to

a number of forks which is typically at least linear in the size. To cope with the amplified

path explosion, we propose a state merging approach which is applied in symbolic-size

dependent loops, a common scenario in which our model introduces additional forking.

Main contributions:

1. We present a bounded symbolic-size model that enables analysis with variable-size

inputs.

2. We propose a state merging approach to mitigate the path explosion introduced

by our model.

3. We implement a KLEE-based prototype, which we make available as open-source.
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4. We evaluate our model in the context of API and whole-program testing, and find

previously unknown bugs.

Outline. In Section 5.2, we present our bounded symbolic-size model and our state

merging approach for reducing the additional forks caused by this model. In Sections 5.3

and 5.4, we discuss our implementation and evaluation, respectively.

5.2 Technique

In Section 5.2.1, we present our bounded symbolic-size model. In Section 5.2.2, we

propose a state merging approach to cope with the additional forks introduced by that

model. In Section 5.2.3, we present optimizations that allow us to reduce the size of

constraints in merged symbolic states. In Section 5.2.4, we discuss the limitations of

our model.

5.2.1 Bounded Symbolic-Size Model

Ideally, we would like to have a model where the symbolic size of a memory object can

be arbitrarily large, i.e., unbounded. However, such model imposes several challenges.

In the concrete-size model (Section 2.2), every memory object has a fixed address

interval, so when a new memory object has to be allocated, the memory allocator can

easily pick a new address interval which does not intersect with the existing ones. To

illustrate why this is no longer true with symbolic-size allocations, consider the example

from Figure 5.2. Let us assume that the first memory object (line 2) is allocated at

address 0x80000000 and has an unbounded symbolic size n. The SE engine cannot

allocate the second memory object (line 3) at a concrete base address after the first

memory object as the resulting address interval might overlap with the address interval

of the first memory object, thus violating the non-overlapping property. To overcome

this, we will have to allocate the second memory object at some symbolic base address

β, and encode the non-overlapping property directly in the path constraints. In our

example, the non-overlapping of the two memory objects can be encoded using the

following constraints:

0x80000000 > β + 10 ∨ β > 0x80000000 + n
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As the number of such constraints is expected to grow with the size of the address space,

i.e., the number of memory objects, this will eventually become a burden on the SMT

solver.

Another problem is that SE engines typically use the QF_ABV logic fragment

to encode read and write operations. As this logic fragment is quantifier-free, when

we read or write to some offset within a memory object, this operation results in an

explicit encoding. Note that in the example from Figure 5.2, the first memory object

is allocated with calloc, which initializes the memory with zeros. If we do not have a

concrete bound for the size of this memory object, i.e., a maximum value for n, then

we would be forced to use some form of universal quantifiers to express the side effects

of calloc. Even if we have such concrete bound, the value stored at each offset is

encoded separately, so the size of the encoding for the whole memory object would be

at least linear. This means that for large enough memory objects, the analysis will be

impossible due to an extremely high memory usage, suggesting that the size of a given

memory object should be limited anyway.

We thus propose a bounded symbolic-size model in which a memory object is

represented as a tuple:

(b, σ, c, a) ∈ N+ × E ×N+ ×A

where b is a concrete base address, σ is a symbolic expression describing the size of the

memory object, c is the maximum concrete value for σ, i.e., the capacity of the memory

object, and a is an SMT array that tracks the values written to the memory object.

Similarly to Section 2.2, given a memory object mo, we denote its base address, size,

capacity, and SMT array by mo.addr , mo.size, mo.capacity , and mo.array , respectively.

When a memory object (b, σ, c, a) is allocated, we add to the path constraints the

capacity constraint σ ≤ c, where c is user-specified. If that condition is unsatisfiable,

then we increase the capacity c until that capacity constraint becomes satisfiable.

The pointer resolution process together with the read and write operations, which are

described in Section 2.2, remain almost unmodified with the small change of replacing

the concrete size s with the symbolic one σ.
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1 size_t n; // symbolic
2 size_t z; // symbolic
3 char *p = malloc(n); // capacity is 3
4 for (unsigned i = 0; i < n; i++) {
5 if (z == 0) {
6 break;
7 }
8 p[i] = i;
9 }

Figure 5.3: Symbolic-size dependent loop.

𝑆0 𝑛 > 0

𝑆1 𝑆2

𝑛 ≤ 0

𝑆3 𝑆4

𝑆5 𝑆6

𝑆7 𝑆8

𝑧 ≠ 0𝑧 = 0

𝑛 > 1𝑛 ≤ 1

𝑛 > 2𝑛 ≤ 2

𝑛 ≤ 3

Figure 5.4: The execution tree of the program from Figure 5.3.

5.2.2 Mitigating Path Explosion By State Merging

Our model enables a more complete analysis since it supports the symbolic execution of

programs with memory objects whose size can have a range of values rather than only

a fixed one. Nevertheless, this does not come without a cost: Our model introduces

additional symbolic values that describe sizes of memory objects, which in turn may lead

to additional forks and more complex constraints, thus amplifying the known problems

of path explosion and constraint solving.

To illustrate this, consider the program from Figure 5.3. In the concrete-size model,

the value of n is concretized to some concrete value, and the symbolic execution of the

program may fork only at line 5, thus exploring at most two paths. Note that with our

symbolic-size model, the branch condition i < n at line 4 is now a symbolic expression.

Therefore, each iteration of the loop will potentially produce a new fork. For example,

assuming that the capacity for the allocation at line 3 is three, the memory object

allocated at this line would be (b, n, 3, a), and the constraint n ≤ 3 will be added to

the path constraints. Then, five paths will be explored: One path which does not enter

the loop when n = 0, another path that executes the first iteration and breaks from the

loop at line 6, and three paths that execute k full iterations for 1 ≤ k ≤ 3.
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To cope with the problem of path explosion, we employ state merging [69, 77], a

technique that enables the merging of multiple execution paths. We apply state merging

specifically in locations where our model introduces additional forking, as typically

happens in symbolic-size dependent loops, rather than applying it opportunistically in

every possible location.

5.2.2.1 Merging Symbolic-Size Memory Objects

In our model, the merging of symbolic states is defined similarly to previous works [69,

77], except for the case of symbolic-size memory objects which requires a special

treatment. Let s1 and s2 be two symbolic states, and let mo1 ≜ (b, σ, c, a1) and

mo2 ≜ (b, σ, c, a2) be two memory objects in s1 and s2, respectively. The merged

memory object (b, σ, c, a) is constructed such that the following holds:

∀i. 0 ≤ i < c → select(a, i) = ite(s1.pc, select(a1, i), select(a2, i))

Note that the actual size bound of a given memory object (b, σ, c, a), i.e., the maximum

value of σ, can be less than its capacity c. For example, this would happen in the

program from Figure 5.2, if at the moment of allocation at line 2 we had the constraint

n < 5 and the user-specified capacity was 10. Before accessing the i-th cell of a, the

SE engine always validates that i is a valid offset, i.e., i < σ. Therefore, even if i is an

out-of-bounds offset in mo1 (or mo2), our representation of the merged memory object

is still valid, since the i-th offset will never be accessed anyway.

5.2.2.2 Loops

A function’s control flow graph (CFG) is a directed graph whose nodes are basic blocks

(or instructions), where the edges represent possible transitions of the control flow

between nodes. A loop is a strongly connected component in the CFG. A loop exit of

a loop L is a node in the CFG which does not belong to L, but has a predecessor in L.

We assume that for any given basic block (and instruction), we can tell if it belongs to

a loop L or not.
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5.2.2.3 Detecting Symbolic-Size Dependent Loops

We apply state merging selectively only in loops whose execution depends on a symbolic

size expression. We detect such loops dynamically: When the SE engine allocates a

memory object (b, σ, c, a) with a symbolic size, we mark the (atomic) symbolic variables

in σ as tainted. If later, during the execution of a loop L, we encounter a branch

instruction that results in a fork while the corresponding branch condition is tainted,

then L is considered to be symbolic-size dependent.

5.2.2.4 Loop Merging

Algorithm 3 depicts the application of state merging for symbolic-size dependent loops1.

Before explaining the algorithm, we extend the definition given in Section 2.3: A

symbolic state s additionally consists of a merging context s.ctx , which consists of (1) a

loop loop, (2) a set of states states, (3) and a liveness counter counter . In addition,

we extend the definition of merge-compatibility for heaps (Section 2.5): Two heaps h1

and h2 are merge-compatible if for every memory object (b1, σ1, c1, a1) in h1, there is a

memory object (b2, σ2, c2, a2) in h2 such that b1 = b2, σ1 = σ2, and c1 = c2, and vice

versa.

When a symbolic state s executing a loop l reaches a forking branch whose condition

c is tainted, we associate s with a new merging context (line 5), if not already set. We

then associate the states st and sf (forked at line 7) with the merging context ctx , add

them to ctx , update the liveness counter, and update the worklist of the state scheduler

(lines 8-13). When the execution of s reaches a loop exit of a loop l that matches

the loop of the associated merging context (line 15), we decrement the liveness counter

(line 16). If after that, the liveness counter is zero, i.e., all the states of the merging

context ctx finished executing the loop, then we finally perform the merging. As the

merging of two symbolic states is allowed only when their instruction counter points

to the same location, we first split the symbolic states to groups based on the loop

exit that was taken (line 18). Then we merge each group of symbolic states separately

(line 20) using the merging procedure explained next, and update the worklist of the

state scheduler accordingly (line 21).

Algorithm 4 depicts the state merging procedure which receives a merging context

and a set of (merge-compatible) symbolic states. First, we compute the common
1The lines marked in grey will be discussed later and should be ignored for now.
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Algorithm 3 Loop merging algorithm. (The merging procedure merge in line 20 is
defined in Algorithm 4.)

1: function on-forking-branch(s, c, l)
2: if is-tainted(c) then
3: ctx ← s.ctx
4: if ctx = null then
5: ctx ← {.loop : l, .states : {s}, .counter : 1}
6: ctx .root← s.n← {.s : s, .c : true, .l = null , .r = null}
7: st, sf ← fork(s, c)
8: st.ctx ← ctx , sf .ctx ← ctx
9: ctx .states ← (ctx .states \ {s}) ∪ {st, sf}

10: ctx .counter ← ctx .counter + 1
11: s.n.l← st.n← {.s : st, .c : c, .l = null , .r = null}
12: s.n.r ← sf .n← {.s : sf , .c : ¬c, .l = null , .r = null}
13: worklist← (worklist \ {s}) ∪ {st, sf}

14: function on-loop-exit(s, l)
15: if s.ctx .loop = l then
16: s.ctx .counter ← s.ctx .counter − 1
17: if s.ctx .counter = 0 then
18: groups ← group-by-loop-exit(s.ctx .states)
19: for states ∈ groups do
20: m← merge(s.ctx , states)
21: worklist← (worklist \ states) ∪ {m}

constraints of the input symbolic states (line 12), which can be also given by the path

constraints of the symbolic state that initialized the merging context. Then, we extract

for each state si the suffix constraints ψi (line 13), i.e., the constraints of si.pc that do

not appear in φ, which are the constraints that were added by si during the execution

of the loop till its exit. The path constraints of the merged symbolic state are set to

the conjunction of φ and the disjunction of all the suffix constraints (line 14). For each

variable v, its value in the merged symbolic state is set to an ite expression (line 16),

which results in the value si.vars[v] if si.pc holds. In the ite expression, we can actually

use ψi instead of si.pc, since φ is implied by the path constraints of the merged symbolic

state. The merging of the heap, which is described at lines 19-21, is similar to the

standard definition in Section 2.5. The only difference is that the number of array cells

that are merged is limited by the capacity of the memory object, rather than by its

concrete size.

As an example, consider again the program from Figure 5.3 whose execution tree is

given in Figure 5.4. Once the allocation at line 3 occurs, the symbolic expression n is

marked as tainted. Later when the first iteration of the loop is executed (line 4), the
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Algorithm 4 Merging algorithm. (The functions merge-values and merge-pc are
defined in Algorithm 1.)

1: function merge-symbolic-size-object(ctx , {si}ni=1, b)
2: {moi}ni=1 ← {get-memory-object-by-address(si, b)}ni=1

3: σ ← mo1.size
4: c ← mo1.capacity
5: a ← new-smt-array()
6: for 0 ≤ j < c do
7: e← merge-values({si.pc}ni=1, {select(moi.array , j)}ni=1)
8: e← merge-values-opt({si}ni=1, ctx .root, {si 7→ select(ai, j)})
9: a ← store(a, j, e)

10: return (b, σ, c, a)

11: function merge(ctx , {si}ni=1)
12: φ← common-constraints({si.pc}ni=1)
13: {ψi}ni=1 ← {suffix-constraints(si.pc, φ)}
14: pc← φ ∧merge-conditions({ψi}ni=1)
15: pc← φ ∧merge-conditions-opt({si}ni=1, ctx .root)
16: vars ← λv ∈ V. merge-values({ψi}ni=1, {si.vars[v]}ni=1)
17: vars ← λv ∈ V. merge-values-opt({si}ni=1, ctx .root, {si 7→ si.m[v]})
18: heap ← ∅
19: for mo ∈ s1.heap do
20: mo ← merge-symbolic-size-object(ctx , {si}ni=1,mo.addr)
21: heap ← heap ∪ {mo}
22: return {.pc : pc, .vars : vars, .heap : heap, .ctx = null}

loop is detected as symbolic-size dependent, since the branch condition n > 0 is tainted.

The loop at line 4 has two loop exits (lines 6 and 9), so once the exploration of the loop

is completed, the symbolic states are split into two merging groups. The first group

contains only the symbolic state s3 whose path constraints are n > 0 ∧ z = 0, and the

second group contains the rest of the symbolic states, i.e., {s1, s5, s7, s8}. In the merged

symbolic state of the second group, for example, the paths constraints will be:

(n ≤ 3) ∧ (φ1 ∨ φ5 ∨ φ7 ∨ φ8)

where:

φ1 ≜ (n ≤ 0)

φ5 ≜ (n > 0 ∧ z ̸= 0 ∧ n ≤ 1)

φ7 ≜ (n > 0 ∧ z ̸= 0 ∧ n > 1 ∧ n ≤ 2)

φ8 ≜ (n > 0 ∧ z ̸= 0 ∧ n > 1 ∧ n > 2)
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and assuming that the memory object pointed to by p is (b, n, 3, a), the value of p[2],

for instance, will be:

ite(φ1,

select(a, 2),

ite(φ5,

select(store(a, 0, 0), 2),

ite(φ7,

select(store(store(a, 0, 0), 1, 1), 2),

select(store(store(store(a, 0, 0), 1, 1), 2, 2), 2))))

which can be simplified using store eliminations to:

ite(φ1, select(a, 2), ite(φ5, select(a, 2), ite(φ7, select(a, 2), 2)))

Once state merging has been applied, we were able to reduce the number of explored

paths. However, that resulted in a more complex representation of the merged symbolic

states, due to the introduction of ite and disjunctive expressions. From our experience,

the representation complexity of queries has a direct impact on SMT solving times, so

the merged symbolic states should be represented as compactly as possible.

5.2.3 Optimizations

When we merge symbolic states, we generate ite and disjunctive expressions that may

contain duplicate or redundant expressions. This happens, for example, in the program

from Figure 5.3, when we merge the symbolic states from the merging group that

corresponds to the loop exit at line 9. Let φi be again the constraints that were added

to the state si during the execution of the loop till its exit. Then, the path constraints

of the resulting merged symbolic state is given by (as mentioned in Section 5.2.2):

(n ≤ 3) ∧ (φ1 ∨ φ5 ∨ φ7 ∨ φ8)

Note that there are conditions that unnecessarily repeat across the different constraints:

For example, the condition n > 0 ∧ z ̸= 0 appears in the last three disjuncts (φ5, φ7,
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and φ8), and the condition n > 1 appears in both φ7 and φ8. Moreover, the disjunction

of the last three constraints (φ5, φ7, φ8) is actually equivalent to:

n > 0 ∧ z ̸= 0

since:

(n ≤ 1) ∨ (n > 1 ∧ n ≤ 2) ∨ (n > 1 ∧ n > 2) ≡ true

The redundant conditions mentioned above occur also when we merge the contents of

the memory object allocated at line 3.

Instead of optimizing the expressions resulting from the original merging algorithm,

we generate them in an equivalent and reduced form beforehand. To do so, we use the

execution tree (Section 2.4) constructed during the symbolic execution of the loop in

a given merging context. Recall that each node in the execution tree is either a leaf

node that corresponds to a final symbolic state reaching a loop exit, or an intermediate

node that has exactly two successors corresponding to the true and false sides of a

branch. In addition, each node is associated with the corresponding symbolic state and

the condition because of which it was forked, where the condition of the root node is

initialized to true. In the execution tree from Figure 5.4, for example, the leaf and

intermediate nodes are marked in grey and white, respectively.

To support the construction of the execution tree in a given merging context, we

extend Algorithm 3 with the lines marked in grey. In line 6, we initialize the node of

the initial state, which is set to the root of the execution tree. In lines 11 and 12, we

extend the execution tree by setting the children of the node associated with s to the

nodes of st and sf , which are associated with the conditions c and ¬c, respectively.

Our optimized constraint merging procedure is given in Algorithm 5. The procedure

merge-conditions-opt receives a set of symbolic states states and a node n from the

execution tree, and returns a pair of a flag and a condition. The flag indicates whether

the subtree originating from n is complete, i.e., all the symbolic states associated with

its nodes belong to states, and the condition is the resulting merged constraint. If n

is a leaf node, then we return its associated condition if its symbolic state belongs to

states (lines 2-6), and false otherwise. If n is an intermediate node, then we recursively

generate the constraints φl and φr for the children nodes (lines 7-8). If f does not hold,

i.e., n’s sub-tree contains at least one symbolic state that does not belong to states,
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Algorithm 5 Optimized constraint merging
1: function merge-conditions-internal(states, n)
2: if is-leaf (n) then
3: if n.s ∈ states then
4: return true, n.c
5: else
6: return false, false

7: fl, φl = merge-conditions-internal(states, n.l)
8: fr, φr = merge-conditions-internal(states, n.r)
9: f ← fl ∧ fr

10: if f then
11: φ← n.c
12: else
13: φ← n.c ∧ (φl ∨ φr)

14: return f, φ

15: function merge-conditions-opt(states, n)
16: f, φ = merge-conditions-internal(states, n)
17: return φ

then we return the conjunction of the current condition with the disjunction of the

children’s constraints (line 13). The disjunction of the constraints corresponding to any

complete sub-tree, i.e., a sub-tree in which all the symbolic states belong to states, is

guaranteed to be equivalent to true. Therefore, if f holds, then we are in the case where

n’s sub-tree is complete, and the term φl∨φr can be further simplified to true (line 11).

Note that the current condition n.c is always added only once, thus avoiding duplicate

occurrences. In addition, if φl (or φr) is false, i.e., the sub-tree originating from n.l (or

n.r) does not contain states from states, then we can propagate only φr (or φl).

As an example, consider the application of Algorithm 5 with states as the merging

group {s1, s5, s7, s8}, and n as the root of the execution tree from Figure 5.4. Without

the simplification at line 11, the resulting constraint will be:

(n ≤ 0) ∨ (n > 0 ∧ z ̸= 0 ∧ (n ≤ 1 ∨ (n > 1 ∧ (n ≤ 2 ∨ n > 2))))

which already reduces the size of the constraint from O(n2) to O(n). When applying

the simplification at line 11, the constraint is further reduced to:

(n ≤ 0) ∨ (n > 0 ∧ z ̸= 0)

Our optimized value merging procedure merge-values-opt is given in Algorithm 6. It
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Algorithm 6 Optimized value merging
1: function merge-values-opt(states, n,m)
2: if is-leaf (n) then
3: if n.s ∈ states then
4: return m[n.s]
5: else
6: return null
7: vl = merge-values-opt(states, n.l,m)
8: vr = merge-values-opt(states, n.r,m)
9: if vl = null ∧ vr = null then

10: v ← null
11: else if vl = null ∧ vr ̸= null then
12: v ← vr
13: else if vl ̸= null ∧ vr = null then
14: v ← vl
15: else
16: v ← ite(n.l.c, vl, vr)

17: return v

receives a set of symbolic states states, a node n from the execution tree, and a mapping

m which associates a symbolic state with the value of the target memory location (e.g., a

variable). For a leaf node n, we return the value associated with n.s if the latter exists

in the mapping, and null otherwise (lines 2-6). For intermediate nodes, if a merged

value is available only in one of the children (lines 12 and 14), then we pass on that

value. Otherwise, we handle the case in which both vl and vr are available, where we

return an ite expression choosing between those values (line 16).

For example, when we use the original procedure to merge the value of p[2] for the

merging group {s1, s5, s7, s8}, then assuming that the memory object pointed to by p

is (b, n, 3, a), we get:

ite(φ1, select(a, 2), ite(φ5, select(a, 2), ite(φ7, select(a, 2), 2)))

When applying the optimized procedure, we get:

ite(n ≤ 0, select(a, 2), ite(n ≤ 1, select(a, 2), ite(n ≤ 2, select(a, 2), 2)))

which reduces the size of the expression from O(n2) to O(n).

To incorporate Algorithms 5 and 6 in Algorithm 4, we replace the original

invocations of merge-conditions and merge-values at lines 14, 16, and 7 with the
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invocations of merge-conditions-opt and merge-values-opt at lines 15, 17, and 8,

respectively.

Algorithms 5 and 6 are independent of the search heuristic used by the SE engine,

since the structure of the execution tree is derived only from the program. The time

(and space) complexity of these algorithms is linear in the number of nodes, i.e., linear in

the number of symbolic states to be merged. This is an improvement over Algorithm 4,

where the worst case complexity is quadratic.

In Appendix A.2, we prove that Algorithms 5 and 6 are sound and complete w.r.t.

standard state merging.

5.2.4 Limitations

The size bound of a symbolic-size memory object, i.e., the maximum concrete value of

its symbolic size, can be less than its specified capacity. In such cases, if we read a value

at a symbolic offset from this memory object, this value will contain array updates (store

expressions) over offsets that will be never accessed in the future. This does not affect

the read value, but leads to a more complex expression which might have a negative

effect on the SMT solver. For example, consider the following code snippet:

1 size_t n; // symbolic

2 char *p = calloc(n, 1); // capacity is 3

3 if (n > 0 && n < 3) {

4 p[n - 1] = 17;

5 if (p[0] == 0) {

6 ...

7 }

8 }

Assuming that the allocated memory object at line 2 is (b, n, 3, a), the value of p[0] at

line 5 will be:

select(store(store(store(store(a, 0, 0), 1, 0), 2, 0), n− 1, 17), 0)

The branch at line 3 forces the constraint 1 ≤ n ≤ 2, so the array update that writes

0 at offset 2 becomes irrelevant as the actual size bound is 2. To overcome this, one

needs to know the actual bound of a given symbolic size, which is not straightforward

as it requires generating additional expensive queries.
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The approaches presented in Section 5.2.2 and Section 5.2.3 have the known

limitations of state merging: In practice, the number of symbolic states that can be

merged while keeping the analysis efficient is limited, as complex representations affect

both memory usage and constraint solving.

5.3 Implementation

We implemented our symbolic-size model on top of KLEE [39], a state-of-the-art

symbolic executor that operates on LLVM bitcode [78]. Our extension of KLEE is

configured with LLVM 7.0.0 and STP 2.3.3 [59]. Originally, when a memory object is

allocated with a symbolic size, KLEE concretizes the size expression and performs the

allocation with the resulting concrete size. We modified that part such that instead of

concretizing, we allocate a symbolic-size memory object (as described in Section 5.2.1),

while its capacity is given by the user via a command-line option. If the user-specified

capacity is too low, i.e., the symbolic size is always greater than the capacity under

the path constraints of the corresponding symbolic state, then the capacity is gradually

increased until that constraint becomes feasible. In addition, we modified the relevant

parts which handle memory access operations and pointer resolution, in order to handle

appropriately symbolic-size memory objects. We avoid state merging when the number

of states exceeds a user-specified threshold,2 as applying it in such cases leads to high

memory usage and poor performance of the SMT solver. We disable state merging in

loops which contain function calls and nested loops as the number of explored states in

such cases is typically too high.

5.4 Evaluation

In our experiments, we evaluate the concrete-size and the symbolic-size models in the

context of API testing and whole-program testing.

5.4.1 Experimental Setup

Vanilla KLEE concretizes symbolic size expressions using the SMT solver, which means

that the user has little control over the resulting concretized size values. Throughout

experimentation, we observed that concretizations often result in small size values, e.g.,
2In the evaluation, this threshold is set to 10,000.
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0 or 1, which leads to fast analysis times with a rather low code coverage. Therefore,

we chose a more competitive baseline mode (Base) which concretizes the symbolic size

to its maximum feasible value w.r.t. the specified capacity.

The other modes we use in the evaluation are denoted as range modes, where all

the possible sizes of a given symbolic-size memory object are considered, resulting in a

complete exploration w.r.t. the specified capacity. We compare between several range

modes: Under the concrete-size model, we use an eager forking mode (ForkEager) which

forks at allocation time for each feasible value of the symbolic size expression. Under the

symbolic-size model described in Section 5.2.1, we use a lazy forking mode (ForkLazy)

which forks on-demand, and the two merging modes (SM and SMOpt) described in

Section 5.2.2 and Section 5.2.3, respectively.

We performed our experiments on several machines with Intel i7-6700, 32 GB of

RAM, and Ubuntu 16.04 as the operating system. We make our implementation3 and

the associated replication package4 available as open-source.

5.4.2 API Testing

The benchmarks used in this experiment are: libtasn1 [14] v4.16.0 (15K SLOC),

libpng [13], v1.6.37 (56K SLOC), and libosip [12] v5.2.0 (19K SLOC). The libtasn1

library is used for processing data in the Abstract Syntax Notation One (ASN.1) format,

the libpng library is the official PNG image file format reference, and the libosip library

is used for parsing and building messages for the SIP protocol. We chose these libraries

as they are challenging for symbolic execution and contain many APIs that depend on

variable-size memory objects.

In each benchmark, we focused on APIs whose inputs can be modeled using

symbolic-size memory objects, i.e., arrays and strings. We manually constructed a

test driver for each such API, based on the available documentation and the various

usage examples found in the corresponding library.

We analyzed a total number of 65 APIs across the different benchmarks: 17 APIs

from the decoding and encoding modules in libtasn1 , 13 APIs from the pngread and

pngwrite modules in libpng , and 35 APIs from the osipparser2 module in libosip.

For each API, we run KLEE in the five modes (Base, ForkEager , ForkLazy , SM ,

3https://github.com/davidtr1037/klee-symsize
4https://doi.org/10.6084/m9.figshare.14724453

https://github.com/davidtr1037/klee-symsize
https://doi.org/10.6084/m9.figshare.14724453
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Figure 5.6: Number of timeouts.

and SMOpt) with the deterministic DFS search heuristic, a one hour time limit, and a

4GB memory limit. In each run we check the following metrics: analysis time, number

of queries, line coverage computed with GCov [11], and number of explored paths.

5.4.2.1 Empirical Validation

In APIs where all the range modes achieved full exploration, i.e., completed the analysis

before the timeout, we validated that the achieved coverage is identical across these

modes. Note that the Base mode is not considered here, as it is generally less complete

in terms of exploration, making a coverage based comparison meaningless. As the

optimizations described in Section 5.2.3 must not affect the exploration during the

analysis, we additionally validated that the number of explored paths in the SM and

SMOpt modes is indeed identical.

5.4.2.2 Analysis Time

The Base mode uses concretization to handle symbolic-size allocations, therefore it

cannot explore more paths than ForkEager and ForkLazy , which are also forking-based

approaches. As a result, the analysis time with Base is expected to be lower compared
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Figure 5.7: Analysis time scoreboard.

to ForkEager and ForkLazy . The SM and SMOpt modes use state merging, which

might result in less paths compared to other modes and faster analysis even compared

to Base.

Figure 5.5 shows for each benchmark and mode the total time required to analyze

all the APIs. The Base mode was the fastest in libpng but still slower than SMOpt

in libtasn1 and libosip, despite its less complete handling of symbolic-size allocations.

Among the range modes, SMOpt had the lowest analysis time across all the benchmarks.

The slowest mode among all the modes was ForkEager , mainly due to its early forking

mechanism.

As we analyze each API with a timeout of one hour, we also examine the cases which

resulted in a timeout. Figure 5.6 shows for each benchmark and mode the number of

APIs in which a timeout occurred. The merging modes had the lowest number of

timeouts across all the benchmarks, and in libtasn1 and libpng the Base mode had the

same number of timeouts as the merging modes. In each of the benchmarks, the highest

number of timeouts occurred in the ForkEager mode.

We now examine the results of 44 APIs in which the analysis completed before the

timeout at least in one of the modes. Figure 5.7 shows for each benchmark and mode

the number of APIs in which a given mode had the fastest analysis time. The highest

score was achieved by SMOpt in libtasn1 and libpng , and by Base in libosip. Note that

in libosip, SMOpt had relatively high scores as well.

A more detailed comparison between the two merging modes is given in the scatter

plot from Figure 5.8, where the x-axis and y-axis represent the analysis times for SM

and SMOpt , respectively. Across all the APIs, the speedup of SMOpt relatively to SM

varies between 0.9×-4.5×, and its average is 1.4×. The SM mode was faster than the

SMOpt mode only in one case, where the difference was less than 5 seconds.
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SMOpt achieves the lowest total analysis time among the range modes, and in

some cases, it even outperforms Base, whose exploration is less complete.

5.4.2.3 SMT Solver Queries

In addition to comparing the analysis times, we also compare the number of queries

generated by each of the modes. Here, we report the number of queries that actually

reached the SMT solver, i.e., those that were not handled by any of the constraint

solving heuristics in KLEE (e.g., query caching). Note that here we consider 30 APIs

in which all the modes reached full exploration, as otherwise the comparison would be

meaningless.

The lowest number of queries was generated by the SMOpt mode, with an average

of 3147 queries per API. The number of queries with SM was slightly higher, and as for

the other modes, the relative increase in the average number of queries w.r.t. SMOpt

was 15% in Base, 41% in ForkLazy , and 68% in ForkEager . When comparing between

the two merging modes SM and SMOpt , the number of queries is roughly the same.

The slight differences between these modes originates from the different representation

of the merged symbolic states, which affects the various heuristics used in KLEE’s solver

chain.

The state merging modes (SM and SMOpt) generate less queries compared to

other modes.
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5.4.2.4 Coverage

Figure 5.9 shows for each benchmark and mode the total coverage generated by the

test cases of all the APIs. In libtasn1 , all the modes achieved similar results, with

the ForkEager mode having a slight advantage. In libpng , the highest coverage was

achieved by the merging modes, with an improvement of 37% compared to ForkLazy ,

42% compared to Base, and 160% compared to ForkEager . In libosip, the highest

coverage was achieved by Base and ForkLazy , with an improvement of 25% and 30%

compared to ForkEager and the merging modes, respectively.

We now discuss in more detail the results of 35 APIs in which at least one of the

modes had a timeout. Figure 5.10 shows for each benchmark and mode the number of

APIs in which a given mode achieved the highest coverage compared to other modes.

In libtasn1 and libpng , the highest scores were obtained by the ForkEager mode and

the merging modes, respectively. In libosip, the ForkEager mode had the highest score,

while the other modes had slightly lower scores.

In 20 out of the 35 APIs mentioned above, the merging mode had a timeout and

achieved the same coverage. To further evaluate the results in these cases, we use

an additional evaluation metric: path coverage. Note that comparing between the
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Figure 5.11: Increase in path coverage (%) of SMOpt vs. SM in cases where line
coverage is identical.

merging modes using this metric makes sense: The only difference between the merging

modes is the representation of merged symbolic states, therefore the exploration order

of the search space remains identical. Note that this metric cannot be used to compare

the other modes with the merging modes, since their exploration differs due to the

introduction of state merging.

Figure 5.11 shows the increase in the number of explored paths with SMOpt

relatively to SM . The increase in path coverage is 18% on average and varies between

-1% and 116%. In the three cases were SM explored more paths than SMOpt , the

improvement was negligible and resulted from the non-determinism of the timeout

mechanism in KLEE, which may lead to slightly different running times under the

same timeout configuration.

The state merging modes (SM and SMOpt) achieve more line coverage in some

cases, while in other cases, the forking modes perform better. In terms of path

coverage, SMOpt generally performs better than SM .

5.4.2.5 Merging Complexity

The main problem of state merging originates from disjunctive constraints and ite

expressions introduced during the merging, which propagate to the queries thus making

constraint solving harder. We provide an additional comparison between the two

merging modes (SM and SMOpt) based on the representation complexity of the

symbolic states, i.e., the size of the constraints and the memory values resulting from

the merging. In order to have a meaningful comparison, we compare only the results of

44 APIs in which both of the modes reached full exploration.

Figure 5.12 shows for each API the ratio of the total size of all the merged constraints
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Figure 5.13: Decrease in memory complexity.

between SM and SMOpt .5 The size of the constraints with SMOpt is never greater than

in SM , while the average ratio is 12×. Figure 5.13 shows for each API the ratio of the

total size of all the merged values, i.e., variables and heap memory objects, between

SM and SMOpt . Here again, SMOpt has a clear advantage over SM , while the average

ratio is 24×.

SMOpt significantly reduces the encoding size of the merged symbolic states

compared to SM .

5.4.2.6 Case Study: libosip

In libtasn1 and libpng , the merging modes performed well compared to other modes,

but in libosip, these modes were less efficient. We now characterize the cases where the

merging modes performed better or worse compared to other modes. A scenario where

state merging worked better, occurs when we have multiple independent operations

on different inputs. On the other side, a scenario where state merging worked worse,

occurs when we have multiple subsequent operations on the same input, while each

operation depends on the previous ones. Two APIs that demonstrate these two scenarios

5The size of an expression is defined by the number of nodes in its AST representation.
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Table 5.1: Crashing inputs for the libosip bugs

API Input Size Range

osip_message_set_via ’/\x01/ ’ ≥ 5

osip_uri_parse_headers ’=’ ≥ 2

osip_uri_parse_headers ” = 1

osip_uri_parse_params ” = 1

are sdp_messsage_to_str and osip_message_parse. In the first case, we receive a

struct describing an SDP (session description protocol) message and translate it to a

string. This struct contains several fields which are strings as well, and the translation

is performed on each of them independently. In this case, SMOpt completes the analysis

in 37 seconds, Base runs for 148 seconds, ForkLazy runs for 337 seconds, and ForkEager

hits the timeout of one hour. In the second case, we receive a symbolic-size string, parse

it, and return a struct that describes the parsed message. Here, we have a chain of strchr

invocations on the symbolic input, where each invocation depends on the previous one.

The loop inside strchr is merged, as it is detected as size dependent, so the next call to

strchr operates on a more complex symbolic state than the previous call. In this case,

Base and ForkEager complete the analysis in 2 seconds, ForkLazy in 13 seconds, while

in SM and SMOpt it takes 284 and 186 seconds, respectively.

5.4.2.7 Found Bugs

Throughout our experiments, we found five bugs in two of our benchmarks: libosip and

libtasn1 . In libosip, we found three out-of-bounds read bugs and one integer underflow

bug, all of which were triggered by symbolic-size memory objects, strings in this case.

Table 5.1 shows the APIs in which the bugs were found, the corresponding triggering

inputs, and the range of input sizes under which the bug is reachable. We reported the

bugs and they were confirmed and fixed by the official maintainers of libosip [15, 16]. We

note that Base misses some of these bugs when the capacity is too high or too low, due

to its single-size out-of-bounds reasoning. In libtasn1 , we found another out-of-bounds

read bug in the ETYPE_OK macro, which is used in several APIs in the library. The

bug happens due to an incorrect range-check of an array index, that can be triggered

with a specific element type value. In this case, the bug was not directly triggered by

a symbolic-size memory object, although changing the size of some API parameters

makes this bug unreachable.
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5.4.3 Whole-Program Testing

As a benchmark for whole-program testing, we chose 99 programs from coreutils [10].

With vanilla KLEE, these programs are analyzed with symbolic command-line

arguments (argv) and files (stdin, stdout, etc. ). Every such symbolic input is modeled

as a concrete-size memory object with a user-specified size. Symbolic-size allocations

are not common in coreutils, so in order to have a more insightful evaluation in our

context, we model those inputs using symbolic-size memory objects. Note that the

Base mode with such modeling behaves like vanilla KLEE with the original modeling.

In this experiment, we run each program in the five modes with a timeout of one

hour, and measure the analysis time and the line coverage. We had only five programs

in which not all the modes had a timeout: In two cases, all the modes terminated within

a second except for the ForkEager mode. In the other three cases, the merging modes

terminated faster compared to other modes with an average speedup of 3.0× compared

to Base, 3.3× compared to ForkLazy , and 151.8× compared to ForkEager . In the other

94 programs where all the modes had a timeout, the average coverage with the different

modes varies between 28.3%-31.9%, where the best and worst result was achieved by

ForkEager and ForkLazy , respectively. The highest coverage was achieved in 38 cases

with ForkEager , in 35 cases with Base, in 24 cases with SMOpt , in 24 cases with SM ,

and in 19 cases with ForkLazy . In some of the cases, several modes achieved the same

coverage.

The two merging modes achieved identical coverage in all but 16 cases (out of 94). In

three of these cases, SMOpt generated more test cases and achieved higher coverage. In

the rest 13 cases, both modes generated the same number of test cases. However, some

of the test cases were generated differently due to the difference in the representation

of the constraints with the two modes, which eventually resulted in slightly different

coverage. There was no significant difference between these two modes in terms of path

coverage, and SMOpt had a slight advantage over SM .

ForkEager performs better in most of the programs, but the state merging modes

(SM and SMOpt) still perform better in a considerable number of programs.
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5.4.4 Discussion

We evaluated several approaches that consider a range of size values: ForkEager ,

ForkLazy and the two merging modes. There is a tradeoff here between the number of

explored paths and the complexity of the resulting path constraints: The eager approach

has the highest number of paths and the least complex constraints, the merging approach

has the lowest number of paths and the most complex constraints, and the lazy approach

lies between them.

We believe that this classification allows to explain the results of our experiments:

We experiment with programs that operate on both textual (libosip and coreutils) and

binary (libtasn1 and libpng) inputs. The character-by-character sequential processing

of strings requires considering every size in the range, thus giving an advantage to the

eager approach. In contrast, the relatively higher granularity of binary data processing,

i.e., accessing larger data chunks such as integers, filters out some irrelevant size values,

thus giving the advantage to the other range modes (ForkLazy , SM , and SMOpt).

This difference becomes even more significant when the programs operate on multiple

symbolic-size memory objects. Furthermore, we model strings by assuming a null-

terminator at the last byte, while permitting its occurrence earlier in the buffer. This

allows the baseline approach (Base) to effectively consider a range of logical string sizes,

and achieve similar coverage to the range modes.



Chapter 6

State Merging with Quantifiers in

Symbolic Execution

6.1 Introduction

A key remaining challenge in symbolic execution is path explosion [37]. State

merging [69, 77] is a well-known technique for mitigating this problem, which trades

the number of explored paths with the complexity of the generated constraints. More

specifically, merging multiple symbolic states together results in a symbolic state in

which the path constraint is expressed using a disjunction of constraints and the memory

contents are expressed using ite (if-then-else) expressions.

Unfortunately, the introduction of disjunctive constraints and ite expressions makes

constraint solving harder and slows down the exploration, especially when the number

of symbolic states to be merged is high. Consider, for example, the function memspn

from Figure 6.1 which is based on the implementation of strspn in uClibc [117].1 The

function memspn receives a buffer s, the size of the buffer n, and a string chars, and

returns the size of the initial segment of s which consists entirely of characters in chars.

Suppose that memspn is called with a symbolic buffer s, a symbolic size n bounded by

some constant m, and the constant string "a". The exploration of the loop at lines 3-8

results in O(m) symbolic states. If we merge these symbolic states, then the encoding

of the merged symbolic state, which records, among others, the path constraint and the

value of the variable count, is of size at least linear in m. Now, suppose that the merged

return value of memspn is used later, for example, in the parameter s in another call of
1strspn receives null-terminated buffers which slightly complicates the presentation.

104
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Figure 6.1: Motivating example.

1 int memspn(char *s, size_t n, char *chars) {
2 char *p = chars; int count = 0;
3 while (*p && count < n) {
4 if (*p == s[count]) {
5 count++; p = chars;
6 } else
7 p++;
8 }
9 return count;

10 }

memspn. In that case, if we perform a similar merging operation, then the encoding of

the merged symbolic state will be of size at least quadratic in m, since the merged value

propagates to the path constraints. Such encoding explosion is typically encountered

during the analysis of real-world programs, thus drastically limiting the effectiveness of

state merging in practice.

We propose a state merging approach that reduces the encoding complexity of the

path constraints and the memory contents, while preserving soundness and completeness

w.r.t. standard symbolic execution. At a high level, our approach takes as an input

the execution tree [76], which characterizes the symbolic branches occurring during the

symbolic execution of the analyzed code fragment, and dynamically detects regular

patterns in the path constraints of the symbolic states in the tree, which allows to

partition them into merging groups of symbolic states whose path constraints have a

similar uniform structure. This enables us to encode the merged path constraints using

quantified formulas, which in turn may also simplify the encoding of ite expressions

representing the merged memory contents.

We observed that the generic method employed by the SMT solver to solve the

resulting quantified queries often leads to subpar performance compared to the solving

of the quantifier-free variant of the queries. To address this, we propose a specialized

solving procedure which leverages the particular structure of the generated quantified

queries, and resort to the generic method only if our approach fails.

Main contributions:

1. We propose a state merging approach which uses quantified constraints.

2. We propose a specialized solving procedure to handle the resulting quantified

constraints.
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Figure 6.2: The execution tree of the loop from Figure 6.1 when chars is set to "a".
(Recall that the ASCII code of a is 97.)

3. We implement our approach on top of KLEE [39].

4. We evaluate our approach on real world benchmarks and find bugs.

Outline. In Section 6.2, we present our state merging approach which encodes the

merged symbolic states using quantified constraints. In Section 6.3, we present an

incremental state merging approach for reducing the size of complex execution trees.

In Section 6.4, we present a specialized solving procedure to handle our quantified

constraints. In Sections 6.5 and 6.6, we discuss our implementation and evaluation,

respectively.

6.2 State Merging with Quantifiers

In this section we describe our approach for state merging with quantifiers. We start

with a motivating example, and subsequently formalize our approach.

Motivating Example. Consider the symbolic execution of memspn (Figure 6.1)

with a symbolic buffer s, a symbolic size n, and "a", where n is bounded by 3 (i.e.,

n1.s.pc ≜ n ≤ 3). The corresponding execution tree is depicted in Figure 6.2, where
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the symbolic condition associated with each node is depicted on the incoming edge of

the node.2 Consider the symbolic states associated with the nodes n5, n9, and n13 from

the execution tree in Figure 6.2, whose tree path conditions (Section 2.4) are:

tpc(n5) ≜ n > 0 ∧ ¬s[0] = 97

tpc(n9) ≜ n > 0 ∧ s[0] = 97 ∧ n > 1 ∧ ¬s[1] = 97

tpc(n13) ≜ n > 0 ∧ s[0] = 97 ∧ n > 1 ∧ s[1] = 97 ∧ n > 2 ∧ ¬s[2] = 97

The path constraint of the initial symbolic state (n1.s) is n ≤ 3, so applying standard

state merging (Definition 2.5.1) on the symbolic states of the nodes above will result in

a symbolic state whose path constraint is equivalent to:

n ≤ 3 ∧ (tpc(n5) ∨ tpc(n9) ∨ tpc(n13))

Note, however, that each of the disjuncts above has the following uniform structure: It

uses k formulas (for k = 0, 1, 2) of the form n > _ ∧ s[_] = 97 to encode that the size

of the buffer (n) is big enough to contain k consecutive occurrences of a characters, and

another formula n > k ∧ ¬s[k] = 97. This uniformity is exposed when rewriting each

disjunct using universal quantifiers as follows:

(
∀i.1 ≤ i ≤ 0→ n > i− 1 ∧ s[i− 1] = 97

)
∧ n > 0 ∧ ¬s[0] = 97(

∀i.1 ≤ i ≤ 1→ n > i− 1 ∧ s[i− 1] = 97
)
∧ n > 1 ∧ ¬s[1] = 97(

∀i.1 ≤ i ≤ 2→ n > i− 1 ∧ s[i− 1] = 97
)
∧ n > 2 ∧ ¬s[2] = 97

To exploit the common structure of the rewritten disjuncts, we can introduce an

auxiliary variable (k) and obtain an equisatisfiable merged path constraint:3

n ≤ 3 ∧ (k = 0 ∨ k = 1 ∨ k = 2) ∧(
∀i.1 ≤ i ≤ k → n > i− 1 ∧ s[i− 1] = 97

)
∧

(n > k ∧ ¬s[k] = 97)

The auxiliary variable allows us to achieve similar savings in the encoding of the

2For now ignore the color of the nodes.
3Note that (k = 0 ∨ k = 1 ∨ k = 2) can be rewritten as 0 ≤ k ≤ 2.
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merged memory contents. Consider, for example, the variable count. Its value in the

symbolic states corresponding to n5, n9, and n13 is 0, 1, and 2, respectively, so its

merged value with standard state merging is:

ite(tpc(n5), 0, ite(tpc(n9), 1, 2))

Note, however, that with the rewritten merged path constraint, the path constraints of

the symbolic states corresponding to n5, n9, and n13 are now correlated with the values

of k: 0, 1, and 2. As the values of count can be encoded as a function of those values,

we can simply rewrite the complex ite expression above to k.

Our Approach. Our goal is to reduce the number of disjunctions and

ite expressions introduced in standard state merging. Given a set of merge-

compatible symbolic states, our state merging approach works as follows. First, we

compute partitions of symbolic states based on the similarity of the path constraints

(Section 6.2.1). Then, for each partition, we attempt to synthesize the merged symbolic

state using universal quantifiers (Sections 6.2.2 and 6.2.3), and resort to standard state

merging if that fails.

6.2.1 Identifying Merging Groups via Regular Patterns

To identify similarity between symbolic states, we use the execution tree of the analyzed

code fragment. Recall that the symbolic states in each merging group are associated

with leaf nodes and respective paths in the execution tree. We abstract each path

to a sequence of numbers using a specialized hash function, which allows us to detect

similarity between paths based on a shared regular pattern.

Definition 6.2.1. A hash function h maps constraints (formulas) to numbers (N). We

say that h is valid for an execution tree t if for any two sibling nodes n1 and n2:

h(n1.c) ̸= h(n2.c)

In the sequel, we assume a fixed arbitrary valid execution tree t and a fixed arbitrary

valid hash function h for t.4 We now extend h to paths as follows:

4In practice, we use a hash function that distinguishes between a condition and its negation, which
effectively ensures validity for any execution tree.
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Definition 6.2.2. Given an execution tree t, the hash of a path π(n1, nk) ≜ n1; ...;nk

in t is defined as a sequence of numbers:

h(π(n1, nk)) ≜ h(n1.c) h(n2.c) . . . h(nk.c) ∈ N+

Note that the validity of h ensures that every path in t is identified uniquely by its

hash value.

Definition 6.2.3. A regular pattern is a tuple (ω1, ω2, ω3), where ω1, ω2, ω3 ∈ N∗ are

words (sequences) of numbers. Given an execution tree t, leaf nodes {nj}nj=1 in t, and

numbers {kj}nj=1 ⊆ N, we say that {(nj , kj)}nj=1 match the regular pattern (ω1, ω2, ω3)

if for every j = 1, ..., n:

h(π(nj)) = ω1ω
kj
2 ω3

where π(nj) denotes the sequence of nodes on the path from the root of t to the leaf

node nj (Section 2.4).

Definition 6.2.4. Given an execution tree t, a set of leaf nodes {nj}nj=1 in t is called

a regular partition if there exists a regular pattern (ω1, ω2, ω3) and a set {kj}nj=1 ⊆ N

such that {(nj , kj)}nj=1 match that pattern. A regular partitioning of leaf nodes in t is

a partitioning into disjoint regular partitions.

Example 6.2.1. Consider a hash function h that operates on the abstract syntax tree

(AST) of a formula and assigns the same pre-defined value to all the constant numerical

terms. Such a hash function ensures that formulas with a similar shape will be assigned

the same hash value, for example:

h(n > 0) = h(n > 1) = h(n > 2)

h(s[0] = 97) = h(s[1] = 97)

Figure 6.2 shows the resulting hash values of the nodes in the execution tree. For

simplicity, we visualize every hash value as a distinct color: white (W ), red (R),

blue (B), green (G), and yellow (Y ). Here, {(n5, 0), (n9, 1), (n13, 2)} match the regular

pattern (W,GB,GY) since:

h(π(n5)) = WGY, h(π(n9)) = WGBGY, h(π(n13)) = WGBGBGY



110 CHAPTER 6. STATE MERGING WITH QUANTIFIERS

Table 6.1: A regular partitioning of the leaf nodes of the execution tree in Figure 6.2,
and the resulting merged symbolic states.

Pattern /
Partition Pattern-Based Merged Symbolic States

(W,GB,GY) / formula pattern : (true, n > x− 1 ∧ s[x− 1] = 97, n > x ∧ ¬s[x] = 97)

{n5, n9, n13} pc : n ≤ 3 ∧ 0 ≤ k ≤ 2 ∧ (∀i.1 ≤ i ≤ k → n > i− 1 ∧ s[i− 1] = 97) ∧ (n > k ∧ ¬s[k] = 97)

vars : [ count 7→ k, p 7→ chars + 1, s 7→ s, n 7→ n, chars 7→ chars ]

(W,GB,R) / formula pattern : (true, n > x− 1 ∧ s[x− 1] = 97, n ≤ x)

{n2, n6, n10, n14} pc : n ≤ 3 ∧ 0 ≤ k ≤ 3 ∧ (∀i.1 ≤ i ≤ k → n > i− 1 ∧ s[i− 1] = 97) ∧ ¬n > k

vars : [ count 7→ k, p 7→ chars, s 7→ s, n 7→ n, chars 7→ chars ]

A (possible) regular partitioning of the leaf nodes in Figure 6.2 is given in Table 6.1,

which shows in the left column the regular patterns and their corresponding regular

partitions.

In the next sections, we show how given a regular partition and its corresponding

regular pattern, we can synthesize the resulting merged symbolic state using quantifiers.

6.2.2 Pattern-Based State Merging

A regular pattern indicates the potential existence of a uniform structure in the path

conditions of the symbolic states in the associated regular partition. We formalize this

intuition using formula patterns.

Definition 6.2.5. A formula pattern is a tuple (φ1, φ2(x), φ3(x)), where φ1 is a closed

formula, and φ2(x) and φ3(x) are formulas with a free variable x. We say that

{(nj , kj)}nj=1 match the formula pattern (φ1, φ2(x), φ3(x)), if for every j = 1, ..., n:

tpc(nj)
.
= φ1 ∧

( kj∧
i=1

φ2[i/x]
)
∧ φ3[kj/x]

The uniform structure exposed by formula patterns enables us to perform state

merging with quantifiers:5

Definition 6.2.6. Let {nj}nj=1 be a set of leaf nodes in an execution tree t such that:

• {nj .s}nj=1 are merge-compatible (Section 2.5), and

5For simplicity of presentation, we do not describe here the handling of stack variables and heap-
allocated objects. Our implementation supports both.
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• {(nj , kj)}nj=1 match the formula pattern (φ1, φ2(x), φ3(x))

The pattern-based merged symbolic state of {nj .s}nj=1 is a symbolic state s whose path

constraint, i.e., s.pc, is:

r.s.pc ∧ (

n∨
j=1

k = kj) ∧ φ1 ∧ (∀i. 1 ≤ i ≤ k → φ2[i/x]) ∧ φ3[k/x]

where k is a fresh constant, i is a fresh variable, and r is the root of t.

The symbolic store of s is defined as follows. For every variable v, if there exists a

term t(x) with a free variable x such that:

t[kj/x]
.
= nj .s.vars(v) (for every j = 1, . . . , n)

then the value of v is encoded as follows:

s.vars(v) ≜ t[k/x]

Otherwise, we use the standard merging algorithm (Definition 2.5.1):

s.vars(v) ≜ merge-var({nj .s}nj=1, v)

Example 6.2.2. Consider the regular partition {n5, n9, n13} shown in the first row of

Table 6.1. The formula pattern:

(true, n > x− 1 ∧ s[x− 1] = 97, n > x ∧ ¬s[x] = 97)

is matched by ({(n5, 0), (n9, 1), (n13, 2)}. The pattern-based merged symbolic state

induced by that formula pattern is shown in the right column in Table 6.1 (pc and

vars). Note that for the variable count, the term t(x) ≜ x satisfies:

t[0/x] = 0, t[1/x] = 1, t[2/x] = 2

so the merged value of that variable can be simplified to k. The merging of the other

variables is rather trivial as the symbolic states being merged agree on their values.

Pattern-based state merging is sound and complete w.r.t. standard state merging.

This is formalized in the following theorem:
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Theorem 6.2.7. Under the premises of Definition 6.2.6, let s be the pattern-based

merged symbolic state of {nj .s}nj=1, and let s′ be their merged symbolic state obtained

with standard state merging (Definition 2.5.1). The following holds for any model m:

1. m |= s′.pc iff m[k 7→ k̃] |= s.pc for some k̃ ∈ N.

2. If m[k 7→ k̃] |= s.pc for some k̃ ∈ N, then m(s′.vars(v)) = m[k 7→ k̃](s.vars(v)) for

every variable v.

The proof is in Appendix A.3.1. At a high-level, to prove (1), we use the fact that if

{(n, k)} matches the formula pattern (φ1, φ2(x), φ3(x)), then:

tpc(n) ≡ φ1 ∧ (∀i. 1 ≤ i ≤ k → φ2[i/x]) ∧ φ3[k/x]

and to prove (2), we use (1) and the fact that the formulas {tpc(nj)}nj=1 are pairwise

unsatisfiable.

6.2.3 Synthesizing Formula Patterns

So far, we did not discuss how formula patterns are obtained. We now describe an

approach which attempts to synthesize a formula pattern given a regular pattern and

its associated regular partition. As explained in Section 6.2.2, this enables us to perform

state merging with quantifiers.

Our hash function h, which we assume to be valid for t (Definition 6.2.1), has the

following useful property:

Lemma 6.2.8. The following holds for any two nodes n1, n2 in t:

1. If h(π(n1)) = h(π(n2)) then n1 = n2.

2. If h(π(n1)) is a prefix of h(π(n2)), then there is a single path π(n1, n2) in t.

The proof is in Appendix A.3.2. At a high-level, the proof is based on the fact that t is

a valid execution tree (Section 2.4).

Accordingly, we define:

Definition 6.2.9. Let ω1, ω2 ∈ N+ be two words such that:

h(π(n1)) = ω1, h(π(n2)) = ω1ω2
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for some nodes n1, n2 in t. Then we define:

extract(ω1) ≜ tpc(n1), extract(ω1, ω1ω2) ≜ tpc(n1, n2)

Note that Lemma 6.2.8 ensures that n1 and n2 are uniquely determined by ω1 and ω2.

In the following lemma, we show how a tree path condition can be represented using

extract. This will be used later to prove Theorem 6.2.11.

Lemma 6.2.10. Let n be a leaf node in an execution tree t, and suppose that:

h(π(n)) = ω1ω2...ωj

Then:

tpc(n)
.
= extract(ω1) ∧

extract(ω1, ω1ω2) ∧

...

extract(ω1...ωj−1, ω1...ωj−1ωj)

The proof is in Appendix A.3.3. At a high-level, the proof is based on the definitions

of extract, tpc, and tpc (Definition 6.2.9 and Section 2.4).

Now, we use extract to define the sufficient requirements to obtain a formula pattern

from a given regular pattern.

Theorem 6.2.11. Given an execution tree t and a set {nj}nj=1 of leaf nodes in t,

suppose that {(nj , kj)}nj=1 match the regular pattern (ω1, ω2, ω3). If (φ1, φ2(x), φ3(x))

is a formula pattern that satisfies:

φ1
.
= extract(ω1)

φ2[i/x]
.
= extract(ω1ω

i−1
2 , ω1ω

i
2) (i = 1, ...,max{kj}nj=1)

φ3[kj/x]
.
= extract(ω1ω

kj
2 , ω1ω

kj
2 ω3) (j = 1, ..., n)

then {(nj , kj)}nj=1 match (φ1, φ2(x), φ3(x)).

The proof is in Appendix A.3.4. At a high-level, the proof applies Lemma 6.2.10 for

each of the leaf nodes, and then uses the assumption about the given formula pattern.
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Based on Theorem 6.2.11, we reduce the problem of finding a formula pattern to

two synthesis tasks, for φ2 and φ3. (Note that φ1 is trivially obtained from the first

requirement of the theorem.) Each synthesis task has the form:

φ[dℓ/x]
.
= ψℓ (ℓ = 1, ..., p)

where (1) φ(x) is the formula to be synthesized (i.e., φ2 or φ3), (2) p is the number

of equations (which is either max{kj}nj=1 in the case of φ2 or n in the case of φ3),

(3) {ψℓ}pℓ=1 are formulas (obtained from the extracted path constraints), and (4) {dℓ}pℓ=1

are constant numerical terms (which are the i’s in the case of φ2 or the kj ’s in the case

of φ3).

As synthesis is a hard problem in general, we focus on the case where all formulas

in {ψℓ}pℓ=1 are syntactically identical up to a constant numerical term, i.e., there exists

a formula θ(y) such that θ[γℓ/y]
.
= ψℓ for some numerical constants {γℓ}pℓ=1. To obtain

φ(x) from θ(y) it remains to synthesize a term that will express each γℓ using the

corresponding dℓ. Technically, if there exists a term t(x) such that:

t[dℓ/x] ≡ γℓ (ℓ = 1, ..., p)

then the desired formula φ(x) will be given by θ[t(x)/y]. When looking for such t(x), we

restrict our attention to terms of the form a ·x+b where a and b are constant numerical

terms that must satisfy:
p∧

ℓ=1

(a · dℓ + b = γℓ)

The existence of such a and b can be checked using an SMT solver.

Example 6.2.3. Consider again the regular pattern (W,GB,GY) which is matched by
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{(n5, 0), (n9, 1), (n13, 2)}. We look for a formula pattern (φ1, φ2(x), φ3(x)) that satisfies:

φ1
.
= true extract(W)

φ2[1/x]
.
= n > 0 ∧ s[0] = 97 extract(W,WGB)

φ2[2/x]
.
= n > 1 ∧ s[1] = 97 extract(WGB,WGBGB)

φ3[0/x]
.
= n > 0 ∧ ¬s[0] = 97 extract(W,WGY)

φ3[1/x]
.
= n > 1 ∧ ¬s[1] = 97 extract(WGB,WGBGY)

φ3[2/x]
.
= n > 2 ∧ ¬s[2] = 97 extract(WGBGB,WGBGBGY)

Consider, for example, the formulas associated with φ2. First, note that they are

identical up to a constant numerical term, e.g., for θ(y) ≜ n > y ∧ s[y] = 97:

θ[0/y]
.
= n > 0 ∧ s[0] = 97 θ[1/y]

.
= n > 1 ∧ s[1] = 97

Now we look for constant numerical terms a and b such that:

(0 = (a · x+ b)[1/x]) ∧ (1 = (a · x+ b)[2/x])

which is satisfied by a ≜ 1 and b ≜ −1, therefore:

φ2(x) ≜ θ[(x− 1)/y]
.
= n > x− 1 ∧ s[x− 1] = 97

We similarly synthesize φ3(x) ≜ n > x ∧ ¬s[x] = 97.

If we succeeded to synthesize a formula pattern (φ1, φ2(x), φ3(x)) matched by

{(nj , kj)}nj=1, we attempt to synthesize the merged value of a variable v by synthesizing

a term t(x) that satisfies:

t[kj/x]
.
= nj .s.vars(v) (j = 1, ..., n)

Such terms are synthesized similarly to formula patterns.

For each regular partition shown in Table 6.1, we automatically synthesize the

formula pattern and the induced merged symbolic state using the aforementioned

technique.
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6.3 Incremental State Merging

When symbolically analyzing code fragments that contain disjunctive conditions, the

number of generated symbolic states as well as the size of the generated execution

trees might be exponential. In such cases, the exploration of the code fragment might

not terminate within the allocated time budget and the analysis might not even reach

the point where state merging, and pattern-based state merging in particular, can be

applied.

To address this issue, we propose an incremental approach for state merging, in

which we merge leaves in the execution tree not only with other leaves, but also with

intermediate nodes, during the construction of the execution tree. This allows us to

compress the execution tree as it is constructed. Once the construction of the execution

tree is complete, we can apply our pattern-based state merging approach on the leaves.

Technically, in addition to the active symbolic states, i.e., those that are stored in the

current leaf nodes, we keep also the non-active symbolic states, i.e., those that are

stored in the intermediate nodes. When a new leaf n1 is added to the execution tree,

we search for the highest node n2, i.e., closest to the root, such that n1.s and n2.s

are merge-compatible and have the same symbolic store w.r.t. live variables [20]. We

additionally require that n1 is unreachable from n2 to avoid infinite sequences of merges.

If such a node n2 is found, we replace n1 and n2 (including the subtree of n2) with a

single merged node nnew that is added as a child of their lowest common ancestor, nlca .

We fix nnew .c ≜ tpc(nlca , n1) ∨ tpc(nlca , n2) and nnew .s is the merged symbolic state of

n1.s and n2.s. After the above, if a node p remains with a single child n, we remove p,

redirect its incoming edge to n, and update the condition of n to n.c∧p.c. As we merge

intermediate nodes, our approach does not rely on the search heuristic to synchronize

between the active symbolic states to produce successful merges. To avoid nodes with

more than two children, we require that nlca is the parent of n1 or n2. (This restriction

can be easily lifted.)

Example 6.3.1. Consider again the function memspn from Figure 6.1. When symbolically

analyzing memspn while setting the value of the chars parameter to "ab", instead of

"a", this results in an exponential execution tree. The upper part of Figure 6.3 shows

the partial execution tree with some of the nodes that were added during the execution

of the first iterations of the loop at line 3. Assuming that n2 is added last, we merge it
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𝒏𝟏
𝒔 𝟎 = 𝟗𝟕 ¬ 𝒔 𝟎 = 𝟗𝟕
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before

after

Figure 6.3: Execution tree transformation when memspn is called with chars set to "ab".

with n4 as the symbolic states associated with n2 and n4 are both located at line 5 and

their symbolic stores w.r.t. live variables are identical, since p is dead at this location.

We remove n2 and n4 together with its subtree, and add a new node nnew as a child

of n1, the lowest common ancestor of n2 and n4. Then, n3 is left with its own child,

n5, so we remove n3 and update the condition of n5 appropriately. This results in

the execution tree shown in the lower part of Figure 6.3. After applying similar steps

in the subsequent iterations of the loop, the final execution tree is similar to the one

from Figure 6.2, and can be obtained from it by replacing s[i] = 97 and ¬s[i] = 97

with s[i] = 97 ∨ (¬s[i] = 97 ∧ s[i] = 98) and ¬s[i] = 97 ∧ ¬s[i] = 98, respectively (for

i = 0, 1, 2). Now, the pattern-based approach can be applied similarly to the example

given in Section 6.2.

The incremental state merging approach uses a standard liveness analysis [20] to

find symbolic states to be merged. If the computed liveness results are imprecise, our

approach will not be able to find matching symbolic states and therefore will not be

able to compress the execution tree. In that case, our approach will only impose the

overhead of maintaining snapshots of non-active symbolic states.

6.4 Solving Quantified Queries

In general, the quantified queries generated by our approach (Section 6.2) can be solved

using an SMT solver that supports quantified formulas, e.g., Z3 [46]. In practice,

however, we observed that the generic method employed by Z36 to solve such queries

often leads to subpar performance compared to the solving of the quantifier-free variant

of the queries. Hence, we devise a solving procedure which leverages the particular
6CVC5 [27] and Yices [53] failed to solve most of our queries.
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structure of the generated quantified formulas, and resort to the generic method if our

approach fails.

Before describing our solving procedure for quantified queries, we set some needed

notations.

6.4.1 Notations

We assume closed formulas φ =
∧
c where each clause c is either a quantifier-free

formula θ or a universal formula of the form:

∀i. 1 ≤ i ≤ k → ψ

where ψ is a quantifier-free formula with a free variable i.

Definition 6.4.1. Given a quantified clause:

c ≜ ∀i. 1 ≤ i ≤ k → ψ

we denote its bound variable i by bound(c).

Definition 6.4.2. Given a closed formula φ, we denote by q(φ) and qf(φ) the set of

quantified and quantifier-free clauses of φ, respectively.

Definition 6.4.3. Given a formula f , we define:

uconsts(f) ≜ {n | n is an uninterpreted constant in f}

Definition 6.4.4. An access pair is a pair (a, e) comprised of an SMT array a and a

term e.

Definition 6.4.5. Given a formula f , we define:

reads(f) ≜ {(a, e) | a[e] is a subterm of f}

to be the set of all access pairs coming from array access terms in f .

Definition 6.4.6. Given a formula f and a variable x, we define:

vreads(f, x) ≜ {(a, e) ∈ reads(f) | x is a subterm of e}
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to be the set of all access pairs in which the index term contains the variable x.

Definition 6.4.7. Given a closed formula φ, we define:

qarrays(φ) ≜
⋃

c∈q(φ)

{a | (a, e) ∈ vreads(c, bound(c))}

to be the set of arrays accessed using a quantified variable.

Definition 6.4.8. Given a model m and an access pair (a, e), we define:

m(a, e) ≜ (m(a),m(e))

and refer to it as a semantic access pair. We extend this notation to sets of such pairs

in a point-wise manner.

6.4.2 Solving Procedure

Our solving procedure is given in Algorithm 7. Its main function is compute-model

which works in four stages.

6.4.2.1 Quantifier stripping by formula weakening

The function compute-model starts by invoking strip(φ) (line 36) which weakens φ into

a quantifier-free formula φQF by replacing quantified clauses with implied quantifier-

free clauses. More specifically, each quantified clause ∀i. 1 ≤ i ≤ k → ψ in φ is replaced

with quantifier-free clauses stating that (a) the instantiation of ψ to i = 1, denoted

ψ[1/i], must hold if 0 < k, and (b) if ¬ψ[t/i] holds for some term t then t cannot be in

the range [1, k]. Intuitively, the former provides a quantifier-free clause which partially

preserves the properties imposed by the quantified clause, and the latter reduces the

chances of getting a model of φQF that does not satisfy φ, since:

1 ≤ t ≤ k |= (∀i. 1 ≤ i ≤ k → ψ)→ ψ[t/i]

If the SMT solver fails to find a model for φQF than φ is also unsatisfiable. If a model

was found, we check, optimistically, whether it is also a model of φ (line 38).
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Example 6.4.1. Consider the following query, a simplification of a representative query

from our experiments:

φ ≜ (s[n] = 0) ∧ (1 ≤ k ≤ 10) ∧ (s[k − 1] = 8) ∧ (∀i. 1 ≤ i ≤ k → s[i− 1] ̸= 0)

Note that (a) the instantiation of the quantified formula using i = 1 results in:

k ≥ 1→ s[0] ̸= 0

and (b) s[n] = 0 is obtained by substituting ¬(s[i−1] ̸= 0)[n+1/i]. Thus, the weakened

query obtained by quantifier stripping is given by:

φQF ≜ (s[n] = 0)∧ (1 ≤ k ≤ 10)∧ (s[k−1] = 8)∧ (k ≥ 1→ s[0] ̸= 0)∧¬(1 ≤ n+1 ≤ k)

The following model, for example, is a model of φQF :

m ≜ {n 7→ 7, k 7→ 7, s 7→ [1, 0, 0, 0, 0, 0, 8, 0]}

but, unfortunately, is not a model of φ.

Note that if we would consider a different model of φQF :

m ≜ {n 7→ 1, k 7→ 1, s 7→ [8, 0]}

then we could get a satisfying model of φ.
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Algorithm 7 A specialized solving procedure
1: function strip(φ)
2: φs ← true
3: for (∀i. 1 ≤ i ≤ k → ψ) ∈ q(φ) do
4: φs ← φs ∧ (k ≥ 1→ ψ[1/i]) ∧

(∧
{¬(1 ≤ t ≤ k) | (¬ψ[t/i]) ∈ qf(φ)}

)
5: return

(∧
qf(φ)

)
∧ φs

6: function duplicate(φ,m, conflicts)
7: for (∀i. 1 ≤ i ≤ k → ψ) ∈ q(φ) do
8: for a ∈ qarrays(ψ) do
9: r ← {(a′, e) ∈ vreads(ψ, i) | a′ = a}

10: let (a, e) ∈ r
11: ṽ ← m[i 7→ 1](a[e])
12: for 2 ≤ n ≤ m(k) do
13: (ã, õ)← m[i 7→ n](a, e)
14: if (ã, õ) ̸∈ conflicts then
15: m(select)(ã, õ)← ṽ

16: return m
17: function repair(φ,m)
18: conflicts ← ∅, map ← {}
19: for (∀i. 1 ≤ i ≤ k → ψ) ∈ q(φ) do
20: for 1 ≤ n ≤ m(k) do
21: if m[i 7→ n] ̸|= ψ then
22: conflicts ← conflicts ∪m[i 7→ n](vreads(ψ, i))
23: for θ ∈ qf(φ) do
24: if m ̸|= θ then
25: conflicts ← conflicts ∪m(reads(θ))
26: for (∀i. 1 ≤ i ≤ k → ψ) ∈ q(φ) do
27: for 1 ≤ n ≤ m(k) do
28: for (ã, õ) ∈ m[i 7→ n](vreads(ψ, i)) ∩ conflicts do
29: map[(ã, õ)]← map[(ã, õ)] ∪ {ψ[n/i]}
30: terms ← {a[e] | (a, e) ∈ reads(φ) ∧ a ̸∈ qarrays(φ)} ∪ uconsts(φ)
31: φ′ ← strip(φ) ∧

(∧
(ã,õ)∈conflicts map[(ã, õ)]

)
∧
(∧

t∈terms t = m(t)
)

32: m′ ← smt-compute-model(φ′)
33: if m′ = ⊥ then return ⊥
34: return duplicate(φ,m′, conflicts)

35: function compute-model(φ)
36: φQF ← strip(φ)
37: m← smt-compute-model(φQF )
38: if m = ⊥ ∨m |= φ then return m

39: md ← duplicate(φ,m, ∅)
40: if md |= φ then return md

41: mr ← repair(φ,md)
42: if mr ̸= ⊥ ∧mr |= φ then return mr

43: return smt-compute-model(φ)
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6.4.2.2 Assignment Duplication

If m is not a model of φ, we use the function duplicate (line 39) to modify m into in a

model md which assigns to every array cell accessed by a quantified clause a value of a

cell in that array that was explicitly constrained by φQF . To do so, duplicate iterates

over each of the quantified clauses ∀i. 1 ≤ i ≤ k → ψ of φ, and attempts to obtain

a satisfying model for them based on m. If m(k) < 1, then the quantified clause is

trivially satisfied. Otherwise, for every array a that ψ accesses using the quantified

variable i, duplicate (1) records in r the set of access pairs coming from such accesses

(line 9), (2) non-deterministically chooses one of these access pairs (a, e) (line 10), and

(3) determines the value ṽ stored in a at the chosen index e when i is substituted by

1. Recall that the accessed cells of a in ψ[1/i] were explicitly constrained by φQF due

to the added instantiations (line 4), so the value ṽ assigned to them by m is a good

candidate to fill in all the other array cells of a constrained by φ. Accordingly, the

interpretation of select in m is modified such that every semantic access pair pertaining

to the access pair (a, e) is mapped to ṽ (line 15). We explain the role of conflicts in the

next stage, and for now, assume that it is an empty set. The duplication, however, is

rather naive and might result in a model which does not even satisfy φQF .

Example 6.4.2. Continuing Example 6.4.1, we pick from the quantified clause the

accessed offset i − 1 of the array s, and update the value of s[j] to m(s[i − 1][1/i])

for each 1 ≤ j ≤ 6. This results in the following model:

md ≜ {n 7→ 7, k 7→ 7, s 7→ [1, 1, 1, 1, 1, 1, 1, 0]}

The model md helps to satisfy the quantified clause, but does not satisfy φ due to the

violation of the clause s[k − 1] = 8.

Note that if we would consider a different model of φQF in the stripping stage:

m ≜ {n 7→ 7, k 7→ 7, s 7→ [8, 0, 0, 0, 0, 0, 8, 0]}

then the model md obtained after assignment duplication could be:

md ≜ {n 7→ 7, k 7→ 7, s 7→ [8, 8, 8, 8, 8, 8, 8, 0]}

which does satisfy φ.
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6.4.2.3 Model Repair

If md is not a model of φ, we invoke the function repair (line 41) to further modify md

into another model, mr, which, much like md, attempts to satisfy the constraints on

the contents of arrays that are imposed by φ but omitted in φQF . However, it does so

in a more principled way than duplicate: First, repair collects a set of semantic access

pairs, called conflicts, from clauses that are not satisfied by m (lines 19-25). This set

is used both to identify quantifier-free constraints that need to be added to φQF , and

to later avoid overwriting “good” array contents. Second, repair iterates again over

the quantified clauses of φ and collects for each semantic access pair (ã, õ) in conflicts

the set of all instantiations that constrain it (lines 26-29). These instantiations are

implied by φ in all models that agree with m on the value of k, which are our focus.

Third, we strengthen strip(φ) with the collected instantiations (line 31), but rather

than computing a model for the strengthened query from scratch, we fix the values

of array cells (and variables) according to their interpretation in m except for arrays

that are accessed with i, those for which a new interpretation is sought. To do so,

we add constraints that force the interpretation of closed terms to agree with their

interpretation in m (line 31). Finally, if a model m′ is found, then duplication is applied

on m′ (line 34). However, this time the semantic access pairs in conflicts, which were

explicitly constrained when computing m′, are excluded from the duplication in order

to avoid their overwriting.

Example 6.4.3. Continuing Example 6.4.2, the violated clause in the model md is:

s[k − 1] = 8

and its concrete access is s[6]. The concrete access in the instantiation (s[i−1] ̸= 0)[7/i]

that was omitted in φQF is also s[6], so we add it to φQF . In addition, we concretize

the values of n and k according to md. The resulting strengthened query is given by:

φQF ∧ (s[6] ̸= 0) ∧ (n = 7) ∧ (k = 7)

and its possible model is given by:

{n 7→ 7, k 7→ 7, s 7→ [1, 0, 0, 0, 0, 0, 8, 0]}
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Then, we duplicate again, but this time while skipping over the cell s[6]. Similarly

to the first duplication, v is set to 1, but the value of s[j] is updated only for 1 ≤ j ≤ 5,

thus avoiding the original violation. The resulting model indeed satisfies φ:

mr ≜ {n 7→ 7, k 7→ 7, s 7→ [1, 1, 1, 1, 1, 1, 8, 0]}

6.4.2.4 Fallback

If no model mr is found, or if it does not satisfy φ, we ask the SMT solver to find a

model for φ (line 43).

6.5 Implementation

We implemented our state merging approach on top of KLEE [39], a state-of-the-art

symbolic executor that operates on LLVM bitcode [78]. As our approach generates

quantified queries over arrays and bit vectors, we use Z3 [48] as the underlying SMT

solver. We extended KLEE’s expression language to support quantified formulas, and

modified accordingly the various parts of the solver chain. We implemented our solving

procedure (Section 6.4) as an additional component in the solver chain. To implement

the hash function used by the pattern-based state merging approach (Section 6.2), we

relied on the expression hashing utility of KLEE and modified it by assigning a pre-

defined hash value to all constants. To extract the regular patterns from the execution

trees, we used a simple regular expression matching algorithm, which tries to detect

repetitions in path hashes using forward and backward scanning. We dynamically check

that the hash function is valid for the generated execution trees (Definition 6.2.1), and

if that is not the case, then we fallback to standard state merging (Definition 2.5.1). In

our experiments, however, we did not encounter such cases. If the number of extracted

regular patterns in a given execution tree exceeds a user-specified threshold, then we

also fallback to standard state merging.

6.6 Evaluation

Evaluating a state merging approach requires determining the desired merging points,

i.e., the code segments where state merging should be applied. In our case, this

translates to identifying code segments that produce merging operations that involve
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many symbolic states. To do so, we evaluate our approach in the context of the symbolic-

size model (Chapter 5). This model supports bounded symbolic-size memory objects,

i.e., memory objects whose size can have a range of values, limited by a user-specified

capacity bound.7 In Section 5.4, it was observed that loops operating on symbolic-

size memory objects typically produce many symbolic states, and state merging was

suggested to combat the ensued state explosion problem. Thus, this memory model

provides a suitable basis for evaluating our state merging approach. Furthermore, the

automatic detection of merging points used in Section 5.2.2 helps avoiding manual

annotations. We emphasize, however, that our technique is independent of the symbolic-

size model itself (see Section 6.6.8). That said, the symbolic-size model does have the

potential to produce more challenging merging operations than the concrete-size model

as it considers a larger state space.

The following modes are the main subjects of comparison: The PAT mode is

the pattern-based state merging approach described in Section 6.2 which partitions

the symbolic states into merging groups based on regular patterns in the execution

tree, and uses quantifiers to encode the merged path constraints. In the PAT

mode, the incremental state merging approach (Section 6.3) and the solving procedure

(Section 6.4) are enabled. The CFG mode is the state merging mode SMOpt described

in Section 5.4, which partitions the symbolic states into merging groups according to

their exit point from the loop in the CFG, and uses the standard QFABV encoding [59]

(disjunctions and ite expressions). The Base mode is the forking approach used in

vanilla KLEE [39].

The following research questions guide our evaluation:

1. Does PAT improve (optimized) state merging (CFG)?

2. Does PAT improve standard symbolic execution (Base)?

3. Do all components contribute to the performance of PAT?

6.6.1 Benchmarks

The benchmarks used in our evaluation are listed in Table 6.2. These benchmarks

were chosen as they are challenging for symbolic execution and provide numerous

7This is in contrast to the standard concrete-size model where every memory object has a concrete
size.
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opportunities for applying state merging. In each benchmark we analyzed a set of

subjects (APIs and whole programs) whose inputs can be modeled using symbolic-size

memory objects, i.e., arrays and strings. In libosip [12], libtasn1 [14], and libpng [13],

the test drivers for the APIs were taken from Section 5.4. In wget [19], a library for

retrieving files using widely used internet protocols (e.g., HTTP), we reused the test

drivers from the existing fuzzing test suite whenever possible, and for other APIs we

constructed the test drivers manually. In apr [23] (Apache Portable Runtime), a library

that provides a platform-independent abstraction of operating system functionalities,

we constructed test drivers for APIs from several modules (strings, file_io and tables)

which manipulate strings, file-system paths, and data structures. In json-c [18], a library

for decoding and encoding JSON objects, we constructed test drivers for APIs that

manipulate string objects. In busybox [17], a software suite that provides a collection of

Unix utilities, we focused on utilities whose input comes from command-line arguments

and files, which can be symbolically modeled using KLEE’s posix runtime. We did

not analyze utilities whose behavior depends on the state of system resources (process

information, permissions, file-system directories, etc.), since KLEE has no symbolic

modeling for those. To prevent the symbolic executor from getting stuck in getopt(),

the routine used in busybox to parse command line arguments, we added the restriction

that symbolic command line arguments do not begin with a ‘-’ character.

6.6.2 Setup

We run every mode under the symbolic-size model with the following configuration: a

DFS search heuristic, a one hour time limit, and a 4GB memory limit. The capacity

settings in each of the benchmarks are shown in Table 6.2. In each benchmark, we set

the capacity to be high enough to produce complex merging operations. However, the

capacity should not be too high, otherwise the analysis will be too complex with each

of the modes.

In every experiment, we use the following metrics to compare between the modes:

analysis time and line coverage computed with GCov [11]. When the compared modes

have the same exploration order, we additionally use the path coverage metric, i.e., the

number of explored paths.

Each benchmark consists of multiple subjects, so when comparing between two

modes, we measure for each subject the relative speedup and the relative increase in
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Table 6.2: Benchmarks.

Version SLOC #Subjects Capacity
libosip 5.2.1 18,783 35 10
wget 1.21.2 100,785 31 200
libtasn1 4.16.0 15,291 13 100
libpng 1.6.37 56,936 12 200
apr 1.6.3 60,034 20 50
json-c 0.15 8,167 5 100
busybox 1.36.0 198,500 30 100

coverage. Note that when we measure the average (and median) speedup, for example,

the speedup in the subjects where both modes timed out is always 1×. Similarly, when

we measure coverage, the coverage in the subjects where both modes terminated, i.e.,

completed the analysis before hitting the timeout, is always identical. To separate the

subjects where the results are trivially identical, we report the average (and median)

over a subset of the subjects depending on the evaluated metric: When measuring

analysis time, we consider the subset of the subjects where at least one of the modes

terminated. When measuring coverage, we consider the subset of the subjects where at

least one of the modes timed out.

We performed our experiments on several machines with Intel i7-6700, 32 GB of

RAM, and Ubuntu 20.04 as the operating system. We make our implementation8 and

the associated replication package9 available as open-source.

6.6.3 Results: PAT vs. CFG

In this experiment, we compare between the performance of the state merging modes:

PAT and CFG . The results are shown in Table 6.3 and Figure 6.4.

Analysis Time Column Speedup in Table 6.3 shows the (average, median, minimum,

and maximum) speedup of PAT compared to CFG in the subjects where at least one

of the modes terminated. Column # shows the number of considered subjects out

of the total number of subjects. In libosip, wget , apr , json-c, and busybox , PAT was

significantly faster in many subjects, and in libtasn1 and libpng , the analysis times were

roughly identical. Figure 6.4a breaks down the speedup of PAT compared to CFG per

subject. Overall, there were 12 subjects where PAT was slower than CFG . In libosip,
8https://github.com/davidtr1037/klee-quantifiers
9https://doi.org/10.6084/m9.figshare.21990386

https://github.com/davidtr1037/klee-quantifiers
https://doi.org/10.6084/m9.figshare.21990386
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PAT was slower only in one API. In that case, the slowdown of 0.03× (from 20 to

554 seconds) was caused by a small number of queries (9) that our solving procedure

(Section 6.4) failed to solve, and whose solving using the SMT solver required most of

the analysis time. In wget , PAT was slower in two APIs. In one case, the slowdown was

caused by the computational overhead of the incremental state merging approach. In

the other case, the slowdown was caused by a relatively high number of queries that our

solving procedure failed to solve. In libtasn1 , PAT was slower in seven APIs, but the

time difference in these cases was rather minor (roughly 10 seconds). In libpng , PAT

was slightly slower in one API due to the computational overhead of extracting regular

patterns. In busybox , PAT was slower in one utility with a minor time difference of

two seconds. Column Diff. in Table 6.3 shows the difference between PAT and CFG in

terms of the total time required to analyze all the subjects. Note that in subjects where

both modes timed out, the time difference is interpreted as zero. In libosip, wget , apr ,

and busybox , PAT achieved a considerable reduction of roughly eight, four, one, and

three hours, respectively. In json-c, PAT achieved a reduction of roughly 20 minutes,

and in libtasn1 and libpng , the time difference was minor. Figure 6.4b breaks down the

time difference between PAT and CFG per subject.

Coverage Column Coverage in Table 6.3 shows the (average, median, minimum, and

maximum) relative increase in line coverage of PAT over CFG in the subjects where at

least one of the modes timed out. As before, column # shows the number of considered

subjects. In libosip and wget , PAT achieved higher coverage in many cases. In libtasn1 ,

PAT resorted to standard state merging in most of the cases, as it did not find regular

(and formula) patterns. Therefore, the results were similar to those of CFG , and there

was no improvement in coverage. In libpng , the coverage was roughly identical in all the

APIs except for two APIs where PAT achieved an improvement of 8.69% and 18.33%.

In apr , the coverage was identical in all the APIs except for two cases where PAT had

an increase of 16.62% and a decrease of 2.12%. In json-c, there was only one API

where one of the modes timed out, and in that case, CFG achieved higher coverage.

In busybox , there were 23 cases where at least one of the modes timed out. In four

cases PAT achieved an improvement of 3.98%-15.45%, and in two cases CFG achieved

an improvement of 1.15% and 61.78%. In the remaining 17 cases, the coverage was

identical. (In most of these cases, PAT did not find formula patterns, which resulted
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Table 6.3: Comparison of PAT vs. CFG .

Time Coverage (%)

Speedup (×) Diff.
(seconds)

Diff.
(lines)

# Avg. Med. Min. Max. # Avg. Med. Min. Max.
libosip 16/35 7.18 5.50 0.03 180.00 27668 28/35 20.45 9.00 0.00 88.63 291
wget 11/31 2.69 1.67 0.54 14.69 12942 24/31 15.02 0.00 -40.00 300.00 89
libtasn1 7/13 0.94 0.95 0.90 0.96 -41 6/13 0.00 0.00 0.00 0.00 0
libpng 1/12 0.70 0.70 0.70 0.70 -9 11/12 2.03 0.00 -2.88 18.33 104
apr 10/20 3.50 1.63 1.00 138.46 4375 11/20 1.31 0.00 -2.12 16.62 0
json-c 4/5 3.16 2.97 2.00 5.76 1149 1/5 0.81 0.81 0.81 0.81 1
busybox 8/30 1.68 1.07 0.92 16.20 10100 23/30 -1.08 0.00 -61.78 15.45 74

in identical explorations.) Column Diff. in Table 6.3 shows the difference between PAT

and CFG in terms of the total number of covered lines across all the subjects. Again,

note that in subjects where both modes terminated, there is no difference in coverage.

It is possible to have an improvement in average coverage but not in total line difference

(apr), and vice versa (busybox ). This happens due to shared code that is covered by only

one mode in one subject but covered by the other mode in other subjects. Figure 6.4c

breaks down the coverage improvement of PAT over CFG per subject. There were three

cases where CFG achieved notably more coverage compared to PAT . In these cases, the

merging operations that occurred at the beginning of the analysis resulted in different

merging groups in each of the modes. As the partitioning into merging groups affects

the exploration, each mode eventually covered different parts of the program.

Scaling The main obstacle in applying state merging originates from the introduction

of disjunctive constraints and ite expressions, especially when the number of symbolic

states to be merged is high. We evaluate the ability of our approach to cope with a

particular aspect of this challenge where the states are generated by loops iterating over

large data objects, a frequent situation in our experience. Technically, we conducted a

case study on libosip, one of our benchmarks, where we gradually increase the capacity of

symbolic-size memory objects. When the capacity is increased, the size of the symbolic-

size memory objects is potentially increased as well. This typically leads to additional

forks, for example, in loops that operate on symbolic-size memory objects. As we

apply state merging in such loops, this eventually results in more complex merging

operations. Thus, increasing the capacity allows us to measure how each mode scales

w.r.t the number of merged symbolic states. In this experiment, we run each API in

each of the state merging modes (PAT and CFG) under several capacity settings. The
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Figure 6.4: Breakdown of the improvement of PAT over CFG per subject.
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Table 6.4: Comparison of PAT vs. CFG under different capacity settings (column
Capacity) in libosip.

Capacity Speedup (×) Coverage (%)
# Avg. Med. # Avg. Med.

10 16/35 7.18 5.50 28/35 20.45 9.00
20 13/35 4.58 5.53 29/35 23.41 19.29
50 12/35 1.99 2.43 30/35 15.19 10.63
100 5/35 2.99 2.75 30/35 10.23 2.32
200 5/35 4.81 6.11 30/35 4.22 0.00

results are shown in Table 6.4.

As can be seen, PAT achieved better results than CFG in all the capacity settings.

In general, when the capacity is increased, there are typically more forks and queries,

which makes the analysis of size-dependent loops harder for both modes. Therefore,

under the highest capacity settings (100 and 200), the coverage improvement was less

significant compared to the lower capacity settings. Note also that under those capacity

settings, there were only five APIs in which at least one of the modes terminated. We

observed that in these APIs the analysis time increased in both modes when the capacity

was increased. However, with CFG the analysis time increased more significantly, so

the speedup under the highest capacity setting (200) was greater. This indicates that

our approach is less sensitive to the input capacity, and hence to the resulting number

of merged symbolic states.

PAT outperforms CFG in many cases and scales better in executing complex

state merging operations.

6.6.4 Results: PAT vs. Base

In this experiment, we compare the performance of PAT and Base, i.e., standard

symbolic execution that uses the forking approach. The results are shown in Table 6.5.

Column Speedup shows the (average and median) speedup of PAT compared to

Base in the subjects where at least one of the modes terminated. As can be seen,

PAT achieved a considerable speedup in the majority of the benchmarks. Overall,

there were 9 subjects in which PAT was slower than Base. In three of these cases,

the time difference was minor (roughly 5 seconds). In the other cases, the slowdown

was caused by the computational overhead of the incremental state merging approach
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Table 6.5: Comparison of PAT vs. Base.

Speedup (×) Coverage (%)
# Avg. Med. # Avg. Med.

libosip 17/35 11.21 3.10 28/35 11.43 1.88
wget 12/31 2.75 3.72 24/31 -2.32 0.00
libtasn1 7/13 4.94 9.30 7/13 1.49 0.00
libpng 1/12 2.46 2.46 11/12 23.59 7.14
apr 10/20 8.40 3.91 14/20 -0.15 0.00
json-c 4/5 1.36 3.09 2/5 0.82 0.82
busybox 9/30 2.43 2.51 22/30 -2.76 0.00

and the complex constraints that were introduced during the state merging. Figure 6.5a

breaks down the speedup of PAT compared to Base per subject, and Figure 6.5b breaks

down the time difference between PAT and Base per subject. In terms of timeouts,

there were 20 subjects in which Base timed out and PAT terminated, and only one

subject in which PAT timed out and Base terminated.

Column Coverage shows the (average and median) relative increase in line coverage

of PAT over Base in the subjects where at least one of the modes timed out. PAT

achieved higher coverage in many subjects, especially in libosip and libpng . In most

of the cases in libtasn1 , apr , and json-c, both of the modes covered the majority of

the reachable lines in a relatively early stage, so the coverage was similar. In wget

and busybox , PAT achieved higher coverage in some of the cases, but there were also

cases in which Base achieved higher coverage. In general, this is a consequence of the

known tradeoff between forking and state merging: The forking approach explores more

paths but generates less complex constraints. Figure 6.5c breaks down the coverage

improvement of PAT over Base per subject.

In addition, we observed that there were four subjects in which Base ran out of

memory. In two of these cases, Base finished the analysis before PAT , but its analysis

was incomplete since KLEE prunes the search space once the memory limit is reached.

PAT outperforms Base in many cases, however, the known tradeoff between state

merging and forking remains.

6.6.5 Results: Component Breakdown

Now, we evaluate the significance of the components used in our pattern-based state

merging approach (PAT ).
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Figure 6.5: Breakdown of the improvement of PAT over Base per subject.
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Table 6.6: Effectiveness of solving procedure.

Total Solved (%)
libosip 517026 94
wget 208535 98
libtasn1 44 100
libpng 2411 86
apr 187700 99
json-c 7390 98
busybox 58013 98

6.6.5.1 Solving Procedure

To evaluate our solving procedure (Section 6.4), we ran each subject in two versions of

PAT : one that relies only on the SMT solver (vanilla Z3) and another one that uses our

solving procedure. Both modes are run with the incremental state merging approach

enabled.

To evaluate the effectiveness of our solving procedure, we show its success rate

in Table 6.6. Column Total shows the total number of generated quantified queries,

and column Solved shows the percentage of queries that were solved by our solving

procedure. The results show that the solving procedure was able to handle most of the

generated queries. In addition, we measured the individual contribution of the different

stages of our solving procedure: quantifier stripping (S ), assignment duplication (D),

and model repair (R). Table 6.7 shows the number of solved quantified queries in each of

the stages: quantifier stripping only (S ), quantifier stripping and assignment duplication

(S + D), and the complete algorithm (S + D + R). Column Fallback shows the number

of quantified queries that our solving procedure failed to solve. The results indicate that

each stage plays a part in the overall efficacy of the procedure.

To evaluate the impact of the solving procedure, we show in Table 6.8 its effect on

analysis time and coverage in the relevant subsets. Here, the two modes have the same

exploration order, so we use the path coverage metric as well. In libosip, wget , apr ,

json-c, and busybox , our solving procedure generally leads to lower analysis times and

higher (line or path) coverage. In libtasn1 and libpng , the results were mostly similar

since the number of quantified queries was relatively low. The only exception was one

of the APIs in libpng where the path coverage was increased by 39.51%.
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Table 6.7: The number of solved queries in the different stages of the solving procedure.

S S + D S + D + R Fallback
libosip 453688 1361 33868 28109
wget 187175 3759 15241 2360
libtasn1 44 0 0 0
libpng 2077 2 0 332
apr 135664 48014 3829 193
json-c 6205 246 859 80
busybox 51917 4837 260 999

Table 6.8: Impact of solving procedure.

Speedup (×) Coverage (%)
Line Path

# Avg. Med. # Avg. Med. Avg. Med.
libosip 16/35 1.55 1.57 19/35 0.26 0.00 89.31 72.82
wget 11/31 4.28 3.62 27/31 14.81 0.00 110.17 30.94
libtasn1 7/13 0.99 0.99 6/13 0.00 0.00 -0.74 -0.24
libpng 1/12 1.03 1.03 11/12 -0.23 0.00 2.62 0.00
apr 10/20 2.86 3.49 10/20 0.00 0.00 38.31 5.57
json-c 4/5 2.89 2.33 1/5 0.00 0.00 79.49 79.49
busybox 8/30 1.29 1.09 23/30 0.52 0.00 9.53 1.65

6.6.5.2 Incremental State Merging

To evaluate the incremental state merging approach (Section 6.3), we run each subject

in two versions of PAT : one that disables incremental state merging and another one

that enables it. The results are shown in Table 6.9.

In libosip, there were relatively many loops where incremental state merging was

successfully applied, i.e., reduced the number of explored paths. This resulted in a

significant speedup and in higher line coverage. In wget , there were four APIs where

incremental state merging could be applied, and in two of these cases the coverage was

improved by 33.33% and 300.00%. In apr , there were four APIs where incremental state

merging could be applied, and in one of these cases the analysis time was reduced by

138.46× and the coverage was improved by 16.62%. In busybox , there were two utilities

where incremental state merging could be applied, and in these cases the coverage was

improved by 11.33% and 15.45%. In libtasn1 , libpng , and json-c, there were no loops

where incremental state merging could be applied. In some cases, this resulted in a

minor performance penalty due to the computational overhead of the approach, which

mainly comes from the need to maintain the snapshots of the non-active symbolic states
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Table 6.9: Impact of incremental state merging.

Speedup (×) Coverage (%)
# Avg. Med. # Avg. Med.

libosip 16/35 6.78 2.80 28/35 18.98 5.83
wget 11/31 0.97 0.97 20/31 16.66 0.00
libtasn1 7/13 0.96 0.98 6/13 0.00 0.00
libpng 1/12 0.96 0.96 11/12 2.35 0.00
apr 11/20 1.60 1.00 11/20 1.71 0.00
json-c 4/5 1.01 1.01 1/5 0.00 0.00
busybox 8/30 0.98 1.00 20/30 0.76 0.00

in the execution tree.

All the components contribute to the performance of PAT .

6.6.6 Additional Experimental Results

To support the generality and robustness of our approach, we perform additional

experiments and report additional results.

6.6.6.1 Concrete-Size Model

Recall that we evaluated our approach in the context of the symbolic-size model. To

show that our approach may be beneficial in other contexts as well, we performed

an additional experiment using the concrete-size model. In this experiment, we set

the concrete sizes of the input memory objects according to the capacity settings in

Table 6.2, and apply state merging in loops whose conditions depend on these sizes, as

we do in our original experiments. The results are shown in Table 6.10. As can be seen,

PAT achieved better results than CFG in most of the benchmarks.

As for the comparison between the speedup (of PAT compared to CFG) obtained

with the concrete-size and symbolic-size (Table 6.3) models: In libosip, we achieved

more speedup with the concrete-size model, and in the other benchmarks, we achieved

more speedup with the symbolic-size model. As for the comparison between the relative

increase in coverage (of PAT over CFG) obtained with the concrete-size and symbolic-

size (Table 6.3) models: In wget , we had more improvement with the concrete-size

model, in libosip, we had more improvement with the symbolic-size model, and in the

other benchmarks the results were similar.
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Table 6.10: Comparison of PAT vs. CFG without the symbolic-size model.

Speedup (×) Coverage (%)
# Avg. Med. # Avg. Med.

libosip 28/35 10.08 8.13 20/35 16.82 2.32
wget 14/31 2.01 1.43 21/31 25.78 0.00
libtasn1 7/13 0.96 0.96 6/13 0.00 0.00
libpng 3/12 0.96 0.98 9/12 -0.55 0.00
apr 10/20 1.97 1.23 11/20 2.67 0.00
json-c 4/5 0.95 1.50 1/5 0.00 0.00
busybox 10/30 1.29 1.00 23/30 -1.33 0.00

Our approach is not restricted to the symbolic-size model, and achieves

comparable improvements with the concrete-size model.

6.6.6.2 Default Search Heuristic

Recall that we performed our experiments with the DFS search heuristic. To show

that our approach does not require a specific search heuristic in order to be beneficial,

we performed an additional experiment using KLEE’s default search heuristic.10 The

results are shown in Table 6.11 and Table 6.12.

In general, when the analysis achieves full exploration with one search heuristic, the

analysis time with other search heuristics is usually similar. Indeed, as can be seen

from the results, the analysis times here are very similar to those obtained with the

DFS search heuristic (Table 6.3 and Table 6.5).

In terms of coverage, the results here are comparable to those obtained with the

DFS search heuristic. In some cases (for example, busybox and libpng), we had

more improvement, and in other cases (for example, libosip and wget), we had less

improvement.

Our approach is not restricted to a specific search heuristic, and achieves

comparable improvements using KLEE’s default search heuristic.

10When state merging is enabled, the default search heuristic is set using the command-line option:
-search=nurs:covnew.
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Table 6.11: Comparison of PAT vs. CFG with the nurs:covnew search heuristic.

Speedup (×) Coverage (%)
# Avg. Med. # Avg. Med.

libosip 17/35 6.69 4.00 28/35 15.12 2.11
wget 10/31 2.85 1.91 25/31 11.66 0.00
libtasn1 7/13 0.94 0.96 6/13 -0.42 0.00
libpng 1/12 0.74 0.74 11/12 9.39 13.04
apr 10/20 3.60 1.72 11/20 1.55 0.00
json-c 4/5 3.10 2.84 1/5 0.82 0.82
busybox 8/30 1.69 1.14 23/30 3.03 0.00

Table 6.12: Comparison of PAT vs. Base with the nurs:covnew search heuristic.

Speedup (×) Coverage (%)
# Avg. Med. # Avg. Med.

libosip 18/35 9.58 3.02 27/35 8.52 0.00
wget 10/31 2.87 5.29 26/31 -5.30 0.00
libtasn1 7/13 4.80 9.29 7/13 0.65 0.00
libpng 1/12 4.80 4.80 11/12 2.11 3.50
apr 10/20 8.12 4.51 15/20 -0.14 0.00
json-c 4/5 1.36 3.59 2/5 0.41 0.41
busybox 10/30 2.11 2.01 23/30 5.57 0.00

6.6.7 Found Bugs

We found two bugs during our experiments with busybox . In both cases, a null-pointer

dereference occurred in the implementation of realpath in klee-uclibc, KLEE’s modified

version of uClibc [117]. We reported the bugs and they were confirmed and fixed by the

official maintainers.11 We note that these bugs were detected by PAT and Base, but

were not found by CFG due to a timeout.

6.6.8 Threats to Validity

First, our implementation may have bugs. To validate its correctness, we performed a

separate experiment where each subject is run in the PAT mode with a timeout of one

hour. During these runs, we validated that every executed state merging operation is

correct w.r.t. Theorem 6.2.7. In addition, for every query that our solving procedure was

able to solve, we validated the consistency of the reported result w.r.t. the underlying

SMT solver.

Second, our choice of benchmarks might not be representative enough. That said,
11https://github.com/klee/klee-uclibc/pull/47

https://github.com/klee/klee-uclibc/pull/47
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we chose a diverse set of real-world benchmarks that were used in prior work [75, 99]. In

addition, we used benchmarks that process inputs of both binary and textual formats.

Third, we evaluated our approach in the context of the symbolic-size model. To

address the threat that our approach may be beneficial only in the context of that

particular memory model, we performed an additional experiment using the standard

concrete-size model. The results, shown in Section 6.6.6.1, lead to conclusions similar

to the ones drawn from the original experiments.

Fourth, the search heuristic might affect the coverage when the exploration does not

terminate. To address the threat that our results may be valid only for the DFS search

heuristic, we performed an additional experiment with the default search heuristic in

KLEE. The results, shown in Section 6.6.6.2, are comparable.

6.6.9 Discussion

Taking a high-level view of the experiments, we observe that our approach brings

significant gains w.r.t. both baselines in most of the benchmarks (libosip, wget , apr ,

json-c, and busybox ). This is because these benchmarks contain an abundant number

of size-dependent loops that generate expressions that are linearly dependent on the

number of repetitive parts in the path constraints, which leads to the detection of

many regular (and formula) patterns. In libtasn1 and libpng , however, most of the

size-dependent loops generate expressions that cannot be expressed using the linear

terms that our synthesis can produce, for example, loops in which conditions depend on

aggregate values such as the sum of array contents. As a result, relatively few formula

patterns are detected. Nevertheless, our approach still preserves in these cases the

benefits of standard state merging w.r.t. standard symbolic execution.
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Related Work

In this section, we discuss past work that relates to the ideas proposed in this thesis.

7.1 Memory Models

In Section 2.2, we described the standard memory model. However, other memory

models for symbolic execution have been proposed in the past, and here, we briefly

describe some of those memory models that mostly relate to our context.

7.1.1 MemSight

Coppa et al. [57] propose the memory model MemSight, which models the symbolic

memory as a set of tuples, where each tuple associates an address expression to a value

expression, along with a timestamp, and a condition. When a write is performed, the

memory is updated with a new tuple containing the corresponding address and value

expressions. When a read is performed, the memory is scanned to determine the tuples

that match the given address expression. The read value is then expressed using an

ite expression, which is built using the matching tuples. This approach attempts to

improve the merging memory model used in ANGR [103], by avoiding concretizations

of symbolic pointers when they are encountered in reads or writes.

In our memory model presented in Chapter 3, memory access operations, i.e., read

and write, are handled by using array theory. In addition, MemSight does not address

the challenge of handling address-dependent queries (Chapter 4), and does not support

symbolic-size memory objects (Chapter 5).

140
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7.1.2 Segmented Memory Model

Segmented memory model (SMM) [73] is a technique for handling symbolic pointers

that have multiple resolutions, which was discussed in more detail in Section 3.2.3.1.

At a high level, it partitions the memory into segments using static pointer analysis,

such that each pointer refers to a single segment, thus avoiding forks when symbolic

pointers are dereferenced.

Similarly to SMM, our memory model presented in Chapter 3 is focused on

mitigating the path explosion caused by symbolic pointers. In contrast to SMM, which

performs the memory partitioning ahead of time, our approach performs the memory

partitioning on the fly. This allows us to obtain smaller segments, which result in smaller

SMT arrays and less complex array-theory constraints.

In addition, SMM does not address the problem of caching address-dependent

queries (Chapter 4). Memory objects can still be allocated in different segments

or allocated in different offsets within the same segment, which will result in the

same problem that happens when base addresses differ. Moreover, the challenge of

caching address-dependent queries exists not only when symbolic pointers have multiple

resolutions, but also when they are resolved to a single memory object (or segment).

Finally, SMM does not support symbolic-size memory objects. However, our

symbolic-size model (Chapter 5) can be easily integrated with the segmented memory

model since every allocated memory object has a finite capacity. Technically, the

only modification needed is calling the function HandleAlloc (See Algorithm 3, line

29 from [73]) with the capacity of the allocated memory object instead of its size.

7.1.3 Segment-Offset-Plane

In the segment-offset-plane memory model [116], a memory object has its own unique

address space, i.e., a segment. This memory model uses fat pointers, i.e., a pointer

is represented as a pair consisting of a segment identifier and an offset (within that

segment). This model supports unbounded symbolic-size allocations using a two-

dimensional address space where the non-overlapping property (Section 2.2) is naturally

supported. This model supports multi-writes, i.e., operations that write to symbolic

number of memory locations at once, but in general, it explicitly represents the value

of each byte in a memory object.

Because of the explicit representation used in their model, their analysis will not
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scale with large enough memory objects due to the expected high memory consumption.

For example, if an strchr-like loop is executed with a string of unbounded length, then

every iteration generates a constraint on a different byte in the string. In our bounded

symbolic-size model (Chapter 5), we set a bound on symbolic-size expressions, which

gives us control over the memory consumption. Their model, in contrast to our state

merging approach presented in Chapter 5, does not address the problem of additional

forking introduced by symbolic-size expressions, and in particular, that of symbolic-size

dependent loops. Their model associates every segment with a single memory object,

so it does not support static ([73]) or dynamic (Chapter 3) memory partitioning. In

addition, to support fat pointers, this model encodes expressions using a more complex

language, which may incur additional overhead. Šimáček [104] implements the memory

model proposed by [116] on top of KLEE, thus inheriting the limitations discussed

above.

7.1.4 CUTE

CUTE [100] is a concolic execution [65] approach which represents pointers using

symbolic values. The pointer constraints are maintained together with the path

constraints, so when CUTE generates a new test input, it obtains a new memory

graph. CUTE represents the memory graphs using logical addresses, which abstract

the physical addresses. By using logical addresses, CUTE is more likely to generate

similar memory graphs, which eventually result in similar path constraints that can be

solved incrementally. In contrast to our memory model presented in Chapter 3, where

pointer constraints may involve arbitrary expressions over bit-vectors and arrays, the

pointer constraints in CUTE can contain only equality (or inequality) between pointers.

7.1.5 UC-KLEE

UC-KLEE [93] supports symbolic-size arrays in its lazy initializing algorithm as well

as allocations of symbolic-size memory objects [92]. Essentially, it uses an approach

similar to the model described in Chapter 5, where every symbolic-size memory object

has a user-specified upper bound on its size.

Their work, in contrast to our state merging approach presented in Chapter 5, does

not address the problem of additional forking introduced by symbolic-size dependent

loops. In addition, we investigated the tradeoffs between different approaches for
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modeling symbolic-size allocations (Section 5.4.1).

7.1.6 Memory Abstraction Techniques

Anand et al. [21] model symbolic-size arrays as part of the lazy initialization algorithm.

Here, arrays are modeled as linked lists with symbolic length, where each node has a

symbolic index and a symbolic value. An abstraction-based subsumption is used for

state pruning and for bounding the number of initialized array cells, thus potentially

leading to missed feasible behaviors. Deng et al. [50] model symbolic-size arrays similarly

to [21], but place a bound on the number of initialized array cells instead of using an

abstraction-based pruning.

Similarly to previously mentioned approaches [93, 116], these works [21, 50] do not

address the problem of additional forking introduced by symbolic-size expressions.

7.1.7 Memory Partitioning

The idea of using memory partitioning for improving program analysis has been explored

before. In the context of bounded model checking, partitioned models have been used

based on various complementary analyses such as points-to analysis [22, 110, 111],

data structure analysis (DSA) [79], and type based analysis [36, 43]. CBMC [41] and

ESBMC [44] also use points-to analysis to refine their memory models. SeaHorn [67]

uses a context-insensitive variant of DSA [79].

The memory partitioning used in prior work is computed ahead of time, while our

memory model presented in Chapter 3 does not require additional pre-computations,

and enables a path-specific memory partitioning during runtime, thus resulting in a

more accurate partitioning.

7.1.8 Other Memory Models

The idea of modeling addresses not as constant values was proposed in the past. Hajdu

et al. [68] model address values in smart contracts as uninterpreted symbols as in this

context addresses can be only queried for equivalence. Our memory model presented

in Chapter 3 allows for arbitrary queries over symbolic addresses.
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7.2 Constraint Solving

The idea of scaling constraint solving by reusing previously solved results has been

investigated in the past: KLEE [39] uses counter-example caching, which stores results

into a cache that maps constraint sets to concrete variable assignments. Using these

mappings, KLEE can solve several types of similar queries, involving subsets and

supersets of the constraint sets already cached. Green [119] is a framework that

enables reusing constraints results within a single run as well as across different runs

and programs. To enable efficient reuse, the technique uses slicing to reduce the

complexity of the constraints, and canonization to store the constraints in a normal form.

GreenTrie [71] is an extension of Green that detects implications between constraints

to improve caching for satisfiability queries. Cashew [33] is a caching framework for

model-counting queries built on top of Green [119], which introduces an aggressive

normalization scheme and parameterized caching. Eiers et al. [55] use subformula

caching to improve the performance of model counting constraint solvers in the context

of quantitive program analysis.

The approaches mentioned above do not address the challenge of solving address-

dependent queries (Chapter 4), as they fail to detect equisatisfiable address-dependent

queries when they are syntactically distinct, due to address constants.

Other approaches have been proposed to scale constraint solving in the context

of symbolic execution: arithmetic transformations [38, 100], splitting constraints into

independent sets [38, 39], multiple solvers support [87], interval-based solving [52], and

fuzzing-based solving [80, 88]. Perry et al. [91] focus on reducing the cost of array-theory

constraints using several semantics-preserving transformations. These transformations

attempt to eliminate array constraints as much as possible by replacing them with

constraints over their indices and values. Modern SMT solvers such as CVC4 [28],

Z3 [47], and Yices [54], have support for incremental solving, which enables learning

lemmas that can be later reused for solving similar queries.

The approaches mentioned in the previous paragraph are orthogonal to our query

caching approach presented in Chapter 4, with which they could be combined.

There are many works on solving quantified queries [26, 31, 45, 51, 61, 94–96].

Our specialized solving procedure (Section 6.4) is mainly designed to solve satisfiable

queries, and resorts to the standard solving procedure when it fails. It adapts ideas from
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E-matching [45] and model-based quantifier instantiation [61] to our specific needs.

7.3 State Merging

State merging [69, 77, 101] has been used in the past to scale symbolic execution.

Kuznetsov et al. [77] propose dynamic state merging with a query count estimation

heuristic that decides when merging should be applied. MultiSE [101] proposes an

alternative approach for state representation. where updates to values are summarized

by guarding each value with a path predicate. Veritesting [24, 102] is another state

merging technique which statically summarizes code regions. JavaRanger [102] extends

veritesting for Java programs to support dynamically dispatched methods, by using the

runtime information available during the analysis.

These works have no support for symbolic-size memory objects, and statically

summarizing code regions that contain loops is challenging, even with the aid of

runtime information. Moreover, in contrast to our state merging approach presented

in Chapter 6, the works mentioned above do not address the encoding explosion problem

caused by using disjunctions and ite expressions.

7.4 Loop Summaries

Loop-extended symbolic execution [98] summarizes input-dependent loops. It uses static

analysis to infer linear relations between variables and trip count variables which track

the number of iterations in the loop.

In contrast, our approaches presented in Chapters 5 and 6 are more dynamic in

nature. The approach in Chapter 5 does not depend on static analysis, and the approach

in Chapter 6 only partially depends on liveness analysis (Section 6.3).

Godefroid et al. [64] propose a dynamic approach that can infer partial invariants

in input-dependent loops. This approach can be applied only in loops where all the

variables depend on induction variables, and only when the loop iteration is executed

at least three times.

In contrast, our approaches presented in Chapters 5 and 6 have no restrictions on

the loop variables or the number of iterations. In addition, both [98] and [64] provide

summaries only for scalar variables, so clearly does not support symbolic-size memory

objects, as opposed to our memory model presented in Chapter 5.
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Kapus et al. [75] summarize string loops by synthesizing calls to standard string

functions. S-Looper [120] introduces string constraints that can be solved by SMT

solvers that support the string theory. The approaches presented in Chapters 5 and 6

are not restricted to string loops and do not require an SMT solver with support for

string theory.

Sinha [105] simplifies ite expressions using rewrite rules, which are not expressive

enough to achieve the effect of the optimizations discussed in Section 5.2.3. The same

work also proposes a technique for generalizing ite expressions generated during the

analysis of loops, which generates parametric expressions based on pattern matching.

This could be used in our approaches (Chapters 5 and 6) to simplify merged values.

7.5 Encoding with Quantifiers

Compact symbolic execution [106] uses quantifiers to encode the path conditions of

cyclic paths that follow the same control flow path in each iteration and update all the

variables in a regular manner. This allows them to encode the effect of an unbounded

repetitions of some of the cyclic paths in the program.

In contrast, our approach presented in Chapter 6 seeks regularity at the level of

the constraints and therefore does not rely on uniformity in the control flow graph.

For example, in memspn (Figure 6.1) they can only summarize the paths in which

either all the characters of s are matched with the first character of chars (the then

branch) or the first character of s is unmatched (the else branch). In contrast, our

approach can summarize all paths up to a given bound using two merged symbolic

states. Furthermore, [106] solves quantified queries using a standard SMT solver as

opposed to our specialized solving procedure (Section 6.4). We attempted to compare

their implementation to ours, but, as was confirmed by the authors, their tool is now

inoperable.

7.6 Static Analysis

Our incremental state merging approach (Section 6.3) uses liveness analysis to detect

symbolic states that have the same symbolic store w.r.t. live variables. Boonstoppel

et al. [30] use liveness analysis for a different purpose, pruning the state space. If two

symbolic states differ only in program values that are not subsequently read, then they
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treat them as identical and prune one of them.



Chapter 8

Conclusions

In Chapter 3, we proposed a novel addressing model where the base addresses are

symbolic values rather than concrete ones. First, this model provides the ability to

reshape the underlying layout of the address space, which we exploit in two applications:

inter-object partitioning, which helps to improve upon the existing segmented memory

model by dynamically relocating memory objects, and intra-object partitioning, which

helps to reduce the cost of constraint solving by dynamically splitting large memory

objects into smaller ones. Second, this model provides the ability to distinguish address

expressions from non-address expressions, which helps to perform efficient query caching

of queries that depend on address expressions (Chapter 4). In Chapter 5, we proposed

a novel memory model where the size of a memory object can be symbolic and not only

concrete. In this model, a memory object can have a size that ranges over a set of values

and is bounded by a user-specified capacity. To reduce the additional forking imposed

by this model, we proposed a state merging approach that is applied in loops that

are involved with symbolic-size memory objects. To further scale the state merging

approach mentioned above, whose effectiveness is limited in the presence of complex

ite’s and disjunctions, we proposed a novel state merging approach in Chapter 6.

In this approach, we reduce the encoding complexity of merged symbolic states by

using quantifiers instead of the standardly used ite’s and disjunctions, and propose a

specialized solving procedure to efficiently handle the resulting quantified constraints.
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Future Work

In our relocatable addressing model (Chapter 3), the non-overlapping property of the

address space is preserved in a rather restrictive way, by using a set of address constraints

that bind each symbolic base address to a concrete value. Unfortunately, this can make

the analysis incomplete, as can be illustrated by the following example:

1 char *p = malloc(10);

2 if (p == 0x80000000) {

3 // ...

4 }

Suppose that the allocated memory object is (β, s, a) and its address constraint is:

β = 0x70000000

Recall that the address constraints are substituted before a query is passed to the SMT

solver, so the query that corresponds to the branch condition of the if statement will

be:

0x70000000 = 0x80000000

which is clearly unsatisfiable. As a result, the block of the if statement will be

uncovered. To overcome this, one needs to preserve the non-overlapping property in

a more general way, for example, by adding constraints that ensure the disjointness of

all address intervals without using specific concrete values. However, efficiently solving

such constraints might be challenging.

In our dynamic intra-object partitioning (Section 3.2.3), we used a rather simple

strategy that splits memory objects into smaller memory objects of equal size. Exploring

149



150 CHAPTER 9. FUTURE WORK

more sophisticated strategies, or applying different strategies for different memory

objects, might further improve the performance. In our experiments (Section 3.4),

we evaluated inter-object partitioning (Section 3.2.3) and intra-object partitioning

(Section 3.2.4) separately, but one can apply those approaches simultaneously. In

addition, it was observed that applying these approaches is not always beneficial, so

one can try to predict when an application of these approaches is likely to payoff.

Our query caching approach (Chapter 4) cannot be applied to queries which are

not address-agnostic. Therefore, coming up with an approach that can efficiently

handle such queries can further improve the performance, especially in programs where

symbolic pointer resolution is expensive. In addition, our query caching approach

supports satisfiability and validity queries, but does not support model queries, i.e.,

queries that provide satisfying models which are used to generate test cases. Another

research direction is applying a similar approach for such queries, including address-

dependent ones.

Our symbolic-size model (Chapter 5) may lead to an incomplete analysis, since every

memory object has a user-specified capacity. Modeling unbounded memory objects in

a way that will allow scalable analysis remains a major challenge.

In our experiments (Section 5.4), the capacity settings were chosen manually. Given

a program to be analyzed, one can try to use static analysis to find a capacity setting

that will allow achieving high coverage while making the analysis as simple as possible.

In addition, the capacity setting in our experiments is global, i.e., it applies for all the

symbolic-size allocations in the program. One can try to set the capacity in a more

refined manner, for example, by tuning it according to the allocation context.

Our state merging approach (Chapter 6) uses quantified constraints to encode

merged symbolic states. We believe that this opens up opportunities for experimenting

with other applications of symbolic execution where quantified constraints might be

naturally used.

Our state merging approach (Chapter 6) automatically detects regular patterns to

partition similar symbolic states into merging groups. For each group, we synthesize a

formula pattern which enables an efficient encoding of the merged symbolic state using

quantifiers. Extracting more complex patterns, e.g., beyond linear formulas, can further

improve the applicability of our approach.

Our solving procedure (Section 6.4) is mainly designed to solve satisfiable quantified
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queries. Reducing the solving time of unsatisfiable quantified queries can further

improve our approach.

The memory models proposed in Chapters 3 and 5 were presented and evaluated

separately. However, we believe that these memory models can be unified into a single

memory model.
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Appendix A

Proofs

A.1 Address-Aware Query Caching

A.1.1 Proof of Lemma 4.4.8

Lemma A.1.1. If φ1 and φ2 are formulas in L ⊇ L1 which are address-agnostic, then

¬φ1, φ1 ∧ φ2, φ1 ∨ φ2 are address-agnostic as well.

Proof. Suppose that φ1 and φ2 are address-agnostic. Let S1 and S2 be address spaces,

let m1 and m2 be models, and suppose that m1 =Int m2, m1 respects S1, m2 respects

S2, and m1 and m2 are consistent w.r.t. S1 and S2.

Negation: If ¬φ1 respects S1 in m1, then φ1 respects S1 in m1. We know that φ1 is

address-agnostic, so m1 |= φ1 ⇐⇒ m2 |= φ1. Therefore, m1 |= ¬φ1 ⇐⇒ m2 |= ¬φ1.

Conjunction: If φ1∧φ2 respects S1 in m1, then φ1 respects S1 in m1 and φ2 respects

S1 in m1. We know that φ1 and φ2 are address-agnostic, so m1 |= φ1 ⇐⇒ m2 |= φ1

and m1 |= φ2 ⇐⇒ m2 |= φ2. Therefore, m1 |= φ1 ∧ φ2 ⇐⇒ m2 |= φ1 ∧ φ2.

Disjunction: Similar to the proof for conjunction.

A.1.2 Proof of Lemma 4.4.9

Lemma A.1.2. Every formula φ in L1 is address-agnostic.

Proof. The proof will be done by indcution on the structure of φ.

Base case 1 : The case where φ is a comparison (=, <,≤) between terms of sort Int

is trivial, since m1 =Int m2 and both t1 and t2 contain only terms of sort Int.
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Base case 2 : Suppose that φ ≜ t1 = t2 where t1, t2 : Ptr. For each term ti, we

need to consider two cases: (1) ti ≜ pi where pi is an uninterpreted constant, and (2)

ti ≜ pi + ni where pi is an uninterpreted constant and ni : Int.

We will show how to handle the case where t1 ≜ p1 + n1 and t2 ≜ p2 + n2 (other

cases are similar). We need to show that:

m1 |= t1 = t2 ⇐⇒ m2 |= t1 = t2

If m1(p1) = m1(p2), then since m1 respects S1, we conclude that either:

p1 = p2

or:

m1(p1) = 0, m1(p2) = 0

If p1 = p2, then:

(p1 + n1 = p2 + n2) ≡ (n1 = n2)

The formula n1 = n2 does not contain pointers, so:

m1 |= n1 = n2 ⇐⇒ m2 |= n1 = n2

since m1 =Int m2.

Otherwise, m1(p1) = 0 and m1(p2) = 0. Since m1 and m2 are consistent w.r.t. S1

and S2, then m2(p1) = 0 and m2(p2) = 0. As a result:

m1 |= p1 + n1 = p2 + n2 ⇐⇒ m1 |= n1 = n2

m2 |= p1 + n1 = p2 + n2 ⇐⇒ m2 |= n1 = n2

and since m1 =Int m2 and the formula n1 = n2 does not contain pointers, we conclude:

m1 |= n1 = n2 ⇐⇒ m2 |= n1 = n2

Now, suppose that m1(p1) ̸= m1(p2). Both p1 + n1 and p2 + n2 respect S1 in m1,
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so there exist disjoint intervals [c1, e1] ∈ S1 and [c2, e2] ∈ S1 such that:

m1(p1 + n1) ∈ [c1, e1], m1(p2 + n2) ∈ [c2, e2]

and therefore:

m1 ̸|= p1 + n1 = p2 + n2

As m1(p1) ̸= m1(p2), it must hold that p1 ̸= p2. Then, since m2 respects S2, it must

hold that m2(p1) ̸= m2(p2). If that was not the case, then:

m2(p1) = 0, m2(p2) = 0

and since m1 and m2 are consistent w.r.t. S1 and S2, it would yield that:

m1(p1) = 0, m1(p2) = 0

which contradicts the assumption that m1(p1) ̸= m1(p2). Since m2 respects S2, m1 and

m2 are consistent w.r.t. S1 and S2, and m1 =Int m2, then p1 + n1 and p2 + n2 respect

S2 in m2. Therefore, there exist disjoint intervals [c1, e1] ∈ S2 and [c2, e2] ∈ S2 such

that:

m2(p1 + n1) ∈ [c1, e1], m2(p2 + n2) ∈ [c2, e2]

and as a result:

m2 ̸|= p1 + n1 = p2 + n2

Induction step: These cases follow directly from Lemma 4.4.8.

A.1.3 Proof of Lemma 4.4.12

Lemma A.1.3. A guard constraint is address-agnostic.

Proof. A guard constraint γ(p, a, n) is given by:

p ≥ a ∧ p < a+ n

Under the assumptions of Definition 4.4.7, if γ(p, a, n) respects S1 in m1, then m1(a)

and m1(a+ n) reside in the same interval in S1. Since m1 and m2 are consistent w.r.t.

S1 and S2, then m1(a) and m2(a) reside in intervals of the same size. Both m1(a) and
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m2(a) are beginnings of intervals, and m1(n) = m2(n), so m2(a) and m2(a+ n) reside

in the same interval in S2. As p : Ptr is a term in L1, then either p ≜ b or p ≜ b + t,

where b is a Ptr term (uninterpreted constant) and t is an Int term.

First, suppose that a and b are the same constants. If p ≜ b, then:

p ≥ a ∧ p < a+ n ≡ 0 < n

and if p ≜ b+ t, then:

p ≥ a ∧ p < a+ n ≡ t ≥ 0 ∧ t < n

Since m1 =Int m2, and both t and n are Int terms, then in both cases:

m1 |= p ≥ a ∧ p < a+ n ⇐⇒ m2 |= p ≥ a ∧ p < a+ n

Otherwise, if a and b are the different constants, then m1(a) and m2(b) reside in

different intervals in S1. Since p respects S1 in m1, then m1(p) cannot reside in the

interval of a in S1:

m1 ̸|= p ≥ a ∧ p < a+ n

Recall that m2 respects S2, and m1 and m2 are consistent w.r.t. S1 and S2, so m2(a)

and m2(b) reside in different intervals in S2, and m2(p) cannot reside in the interval of

a in S2:

m2 ̸|= p ≥ a ∧ p < a+ n

A.1.4 Proof of Lemma 4.4.13

Lemma A.1.4. Let ψ be a formula in L2, t : Int be a term in L2, and n : Int be a term

in L1. If t ≡ n and ψ[n/t] is address-agnostic, then ψ is address-agnostic as well.

Proof. Under assumptions of Definition 4.4.7, suppose that ψ respects S1 in m1. We

need to prove that:

m1 |= ψ ⇐⇒ m2 |= ψ

Since t ≡ n, then ψ ≡ ψ[n/t], so:

m1 |= ψ ⇐⇒ m1 |= ψ[n/t]
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We know that ψ respects S1 in m1, t ≡ n, and n does not contain Ptr terms, so ψ[n/t]

respects S1 in m1. We assumed that ψ[n/t] is address-agnostic, so:

m1 |= ψ[n/t] ⇐⇒ m2 |= ψ[n/t]

Again, since t ≡ n, then:

m2 |= ψ[n/t] ⇐⇒ m2 |= ψ

A.1.5 Proof of Lemma 4.4.14

Lemma A.1.5. Let γ ∧ ψ be a formula in L2, where γ is a guard constraint, i.e.,

γ(p, a, n), and ψ is in L2. If p, p′ : Ptr, and there exists k : Int such that:

• γ |= p− p′ = k

• ψ[k/(p− p′)] is address-agnostic

then γ ∧ ψ is address-agnostic.

Proof. Under the assumptions of Definition 4.4.7, suppose that γ∧ψ respects S1 in m1.

We need to show that:

m1 |= γ ∧ ψ ⇐⇒ m2 |= γ ∧ ψ

We know that γ |= p− p′ = k, so:

m1 |= γ ∧ ψ ⇐⇒ m1 |= γ ∧ ψ[k/(p− p′)]

We assumed that ψ[k/(p − p′)] is address-agnostic, and we already know

from Lemma 4.4.12 that γ is address-agnostic, so using Lemma 4.4.8 we conclude that

γ ∧ψ[k/(p− p′)] is address-agnostic as well. Since γ ∧ψ respects S1 in m1, and k : Int,

we conclude that γ ∧ ψ[k/(p− p′)] respects S1 in m1. Therefore, by Definition 4.4.7:

m1 |= γ ∧ ψ[k/(p− p′)] ⇐⇒ m2 |= γ ∧ ψ[k/(p− p′)]

Then, since γ |= p− p′ = k, we conclude that:

m2 |= γ ∧ ψ[k/(p− p′)] ⇐⇒ m2 |= γ ∧ ψ
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A.1.6 Proof of Theorem 4.4.15

Theorem A.1.6. Let pc be some path constraints generated by the SE engine. Then

pc is address-agnostic.

Proof. The proof is done by induction on the size of the path constraints.

Base case: This case is trivial since pc ≜ true.

Induction step: We assume that pc is address-agnostic, and we need to prove that

pc ∧ φ is address-agnostic as well, where φ originates from a branch condition.

If φ in L1, then pc ∧ φ is address-agnostic according to Lemma 4.4.8. Otherwise, φ

contains a pointer subtraction term p−p′, and since every term is finite, we can assume

that both p and p′ are in L1.

If p− p′ was generated as a result of a pointer dereference, then it must be the case:

p′ ≜ β

where β : Ptr is some uninterpreted constant. Recall that if a pointer p is resolved to

a memory object (β, s, a), then the constraint p ≥ β ∧ p < β + s is added to the path

constraints.1 Therefore, pc must contain the guard constraint:

pc ≜ γ ∧ pc′, γ ≜ p ≥ β ∧ p < β + s

Since p is a term in L1, then there exists a term k : Int such that γ |= p − β = k. If

φ[k/(p− β)] in L1, then we can apply Lemma 4.4.14 to conclude that γ ∧φ is address-

agnostic, and then pc ∧ φ is address-agnostic according to Lemma 4.4.8, since:

pc ∧ φ ≡ (γ ∧ pc′) ∧ (γ ∧ φ)

Otherwise, φ[k/(p − β)] in L2, and we can apply again the same substitution steps as

before, until all the pointer subtraction terms in φ are substituted.

1When p is resolved to a single memory object, then the constraint p ≥ β ∧ p < β + s is already
implied by the path constraints. For simplicity, we can assume that this constraint is added to the
path constraints in such cases as well.
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If p− p′ was generated as a result of a program statement, then it must be the case:

p ≜ β + n, p′ ≜ β +m

where β : Ptr is an uninterpreted constant and both n and m are Int terms in L1. If

φ[(n−m)/(p− p′)] in L1, then it is address-agnostic. The term n−m is in L1 and:

p− p′ ≡ n−m

so φ is address-agnostic according to Lemma 4.4.13, and therefore pc ∧ φ is address-

agnostic as well. Otherwise, φ[(n − m)/(p − p′)] in L2, and we can apply similar

substitution steps until all the pointer subtraction terms in φ are substituted.
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A.2 State Merging Optimizations

In this section, we prove that Algorithms 5 and 6 correctly construct the merged

constraints and values. To do so, we first define:

Lemma A.2.1. Let {ni}ki=1 be leaf nodes in an execution tree t, let n be a node in t,

and let f and φ be defined as follows:

f, φ ≜ merge-conditions-internal({ni.s}ki=1, n)

Then:

φ ≡ merge-conditions({tpc(n, ni)}ki=1)

and if f = true, then:

φ ≡ n.c

Proof. The proof will be done by induction on the structure of the execution tree

originating at the node n.

Base case: Let n be a leaf node. First, suppose that n ∈ {ni}ki=1. Then n is one of

the nodes nj (for some 1 ≤ j ≤ k). By definition of tpc:

tpc(n, nj) ≜ n.c

and for every 1 ≤ i ≤ k such that i ̸= j:

tpc(n, ni) ≜ false

and therefore:

merge-conditions({tpc(n, ni)}ki=1) ≡ n.c

On the other end, by definition of merge-conditions-internal:

merge-conditions-internal({ni.s}ki=1, n) ≜ true, n.c

Now, suppose that n ̸∈ {ni}ki=1. Then by definition of tpc, for every 1 ≤ i ≤ k:

tpc(n, ni) ≜ false
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and therefore:

merge-conditions({tpc(n, ni)}ki=1) ≡ false

On the other end, by definition of merge-conditions-internal:

merge-conditions-internal({ni.s}ki=1, n) ≜ false, false

Induction step: Let n be an intermediate node. According to

merge-conditions-internal, we have:

fl, φl ≜ merge-conditions-internal(g, n.l)

fr, φr ≜ merge-conditions-internal(g, n.r)

f ≜ fl ∧ fr

By the induction hypothesis:

merge-conditions({tpc(n.l, ni)}ki=1) ≡ φl

merge-conditions({tpc(n.r, ni)}ki=1) ≡ φr

By definition of tpc:

merge-conditions({tpc(n, ni)}ki=1) ≡

n.c ∧ (merge-conditions({tpc(n.l, ni)}ki=1) ∨merge-conditions({tpc(n.r, ni)}ki=1))

and therefore:

merge-conditions({tpc(n, ni)}ki=1) ≡ n.c ∧ (φl ∨ φr)

First, suppose that f = true. Then fl = true and fr = true. By the induction

hypothesis:

φl = n.l.c, φr = n.r.c

so:

merge-conditions({tpc(n, ni)}ki=1) ≡ n.c ∧ (n.l.c ∨ n.r.c) ≡ n.c

The last equivalence is valid since the conditions of two sibling nodes are complementary.
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On the other end:

merge-conditions-internal({ni.s}ki=1, n) ≜ true, n.c

Now, suppose that f = false. As before:

merge-conditions({tpc(n, ni)}ki=1) ≡ n.c ∧ (φl ∨ φr)

On the other end, by the definition of merge-conditions-internal:

φ ≜ n.c ∧ (φl ∨ φr)

Lemma A.2.2. Let {ni}ki=1 be leaf nodes in an execution tree t, let n be a node in t,

and let {vi}ki=1 be a set of terms. If nj is reachable from n, then:

tpc(n, nj) |= merge-values-opt({ni.s}ki=1, n, {ni.s 7→ vi}ki=1) = vj

Proof. The proof will be done by induction on the length of the path originating from n.

Base case: Let n be a leaf node. In that case, the state n is nj . By definition:

merge-values-opt({ni.s}ki=1, n, {ni.s 7→ vi}ki=1) ≜ vj

Induction step: Let n be an intermediate node, and suppose without loss of

generality that the path to nj goes through n’s left child. According to merge-values-opt:

vl ≜ merge-values-opt({ni.s}ki=1, n.l, {ni.s 7→ vi}ki=1)

By definition:

tpc(n, nj) ≡ n.c ∧ tpc(n.l, nj)

Note that nj is reachable from n.l, so by the induction hypothesis:

tpc(n.l, nj) |= merge-values-opt({ni.s}ki=1, n.l, {ni.s 7→ vi}) = vj
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and therefore:

tpc(n.l, nj) |= vl = vj

It is not possible that vl is null , otherwise the leaf node nj would be unreachable from

n.l. Therefore, merge-values-opt returns vl or ite(n.l.c, vl, vr). We know that if tpc(n, nj)

holds then n.l.c holds as well, so in both cases merge-values-opt returns vl, so:

tpc(n, nj) |= merge-values-opt({ni.s}ki=1, n, {ni.s 7→ vi}ki=1) = vl

Finally, since:

tpc(n, nj) |= tpc(n.l, nj)

we get that:

tpc(n, nj) |= vl = vj

and thus we can conclude that:

tpc(n, nj) |= merge-values-opt({ni.s}ki=1, n, {ni.s 7→ vi}ki=1) = vj

Theorem A.2.3. Let {ni}ki=1 be leaf nodes in an execution tree t, let r be the root of

t, and let ψi be the suffix of ni’s path constraints in t:

ψi ≜ tpc(r, ni)

Then:

(a) merge-conditions({ψi}ki=1) ≡ merge-conditions-opt({ni.s}ki=1, r)

Let {vi}ki=1 be terms, then:

(b) (
∨

i ψi) |= merge-values({ψi}ki=1, {vi}ki=1) = merge-values-opt({ni.s}ki=1, r, {ni.s 7→ vi})

Proof. By applying Lemma A.2.1 with n as the root r, we obtain (a). Now, if (
∨

i ψi)

holds, then there exists some 1 ≤ j ≤ k, such that ψj holds. The constraints {ψi}ni=1
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are pairwise unsatifiabile, so:

ψj |= merge-values({ψi}ki=1, {vi}ki=1) = vj

Recall that ψj ≜ tpc(r, nj), so according to the previous lemma:

ψj |= merge-values-opt({ni.s}ki=1, r, {ni.s 7→ vi}) = vj

so:

ψj |= merge-values({tpc(r, ni.s)}ki=1, {vi}ki=1) = merge-values-opt({ni.s}ki=1, r, {ni.s 7→ vi})
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A.3 Pattern-Based State Merging

A.3.1 Proof of Theorem 6.2.7

Theorem A.3.1. Under the premises of Definition 6.2.6, let s be the pattern-based

merged symbolic state of {nj .s}nj=1, and let s′ be their merged symbolic state obtained

with standard state merging (Definition 2.5.1). The following holds for any model m:

1. m |= s′.pc iff m[k 7→ k̃] |= s.pc for some k̃ ∈ N.

2. If m[k 7→ k̃] |= s.pc for some k̃ ∈ N, then m(s′.vars(v)) = m[k 7→ k̃](s.vars(v)) for

every variable v.

Proof. Let r be the root of the execution tree t. According to the validity of t

(Section 2.4), the following holds for every j = 1, ..., n:

nj .s.pc ≡ r.s.pc ∧ tpc(nj)

Without loss of generality, we assume that r.s.pc ≡ true. According to Definition 2.5.1:

s′.pc ≜
n∨

j=1

tpc(nj)

We assume that {(nj , kj)}nj=1 match the formula pattern (φ1, φ2(x), φ3(x)), so:

tpc(nj)
.
= φ1 ∧

( kj∧
i=1

φ2[i/x]
)
∧ φ3[kj/x]

According to Definition 6.2.6:

s.pc ≜ (

n∨
j=1

k = kj) ∧ φ1 ∧ (∀i. 1 ≤ i ≤ k → φ2[i/x]) ∧ φ3[k/x]

First, we prove (1).

⇒:

If m |= s′.pc, then there exists 1 ≤ j ≤ n such that:

m |= tpc(nj)
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Let m′ ≜ m[k 7→ kj ]. We will show now that m′ |= s.pc. Clearly, m′ |= k = kj , so:

m′ |=
n∨

j=1

k = kj

Note that tpc(nj) can be rewritten as follows:

tpc(nj) ≡ φ1 ∧ (∀i. (1 ≤ i ≤ kj → φ2[i/x])) ∧ φ3[kj/x]

As m |= tpc(nj) and m′ |= k = kj , and k does not appear in φ1, φ2(x), φ3(x):

m′ |= φ1 ∧ (∀i. (1 ≤ i ≤ k → φ2[i/x])) ∧ φ3[k/x]

and consequently:

m′ |= (
n∨

j=1

k = kj) ∧ φ1 ∧ (∀i. (1 ≤ i ≤ k → φ2[i/x])) ∧ φ3[k/x]

⇐:

If there exists k̃ ∈ N such that m[k 7→ k̃] |= s.pc, then there exists 1 ≤ j ≤ n such that:

m[k 7→ k̃](k) = m[k 7→ k̃](kj)

so:

m[k 7→ k̃] |= φ1 ∧ (∀i. (1 ≤ i ≤ kj → φ2[i/x])) ∧ φ3[kj/x]

and in particular (as k does not appear in the formula above):

m |= φ1 ∧ (∀i. (1 ≤ i ≤ kj → φ2[i/x])) ∧ φ3[kj/x]

As mentioned before:

tpc(nj) ≡ φ1 ∧ (∀i. (1 ≤ i ≤ kj → φ2[i/x])) ∧ φ3[kj/x]

so m |= tpc(nj) and therefore:

m |=
n∨

j=1

tpc(nj)

Second, we prove (2). Suppose that m[k 7→ k̃] |= s.pc, and let v be a variable in the
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symbolic store. The interesting case is when the merged value of v is encoded without

ite expressions. That is, when there exists a term t(x) with a free variable x such that:

t[kj/x]
.
= nj .s.vars(v) (for every j = 1, . . . , n)

and the value of v in s is encoded as:

s.vars(v) ≜ t[k/x]

We already proved that if m[k 7→ k̃] |= s.pc then there must exist 1 ≤ j ≤ n such that:

m[k 7→ k̃] |= tpc(nj), m[k 7→ k̃](k) = m[k 7→ k̃](kj)

Recall that s′.vars(v) is defined by:

ite(tpc(n1), n1.vars(v), ite(tpc(n2), n2.vars(v), . . .))

which can be rewritten as:

ite(tpc(n1), t[k1/x], ite(tpc(n2), t[k2/x], . . .))

Recall that {tpc(nj)}nj=1 correspond to path conditions in the execution tree t, which

are pairwise unsatisfiable, so:

m[k 7→ k̃](s′.vars(v)) = m[k 7→ k̃](t[kj/x])

and since m[k 7→ k̃](k) = m[k 7→ k̃](kj), we get:

m[k 7→ k̃](t[kj/x]) = m[k 7→ k̃](t[k/x])

Finally, the term s′.vars(v) does not contain the term k, so:

m[k 7→ k̃](s′.vars(v)) = m(s′.vars(v))
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A.3.2 Proof of Lemma 6.2.8

Lemma A.3.2. The following holds for any two nodes n1 and n2 in t:

1. If h(π(n1)) = h(π(n2)) then n1 = n2.

2. If h(π(n1)) is a prefix of h(π(n2)), then there is a single path π(n1, n2) in t.

Proof. First, we prove (1):

The proof will be done by induction on the length of the hash, which is a sequence of

numbers.

Base case: The length of the hash sequences is one, so it must be the case where

the paths π(n1) and π(n2) start from the root r. Therefore, it must hold that:

n1 = n2 = r

Induction step: We assume that:

h(π(n1)) = h(π(n2)) = h1 . . . hn−1hn where hi ∈ N

Let n′1 and n′2 be the nodes preceding n1 and n2, respectively:

π(n1) = π(n′1);n1, π(n2) = π(n′2);n2

We know that:

h(π(n′1)) = h(π(n′2)) = h1 . . . hn−1

so by the induction hypothesis:

n′1 = n′2

Thus, we can conclude that n1 and n2 have the same parent node, i.e., n1 and n2 are

sibling nodes. Note that:

h(π(n1)) = h(π(n′1))h(n1), h(π(n2)) = h(π(n′2))h(n2)

so it must hold that:

h(n1) = h(n2)

We assumed that h is valid for t (Definition 6.2.1), so if n1 ̸= n2, then h(n1) ̸= h(n2).
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Therefore, n1 = n2.

Second, we prove (2):

If h(π(n1)) is a prefix of h(π(n2)), then there exists ω ∈ N∗ such that:

h(π(n2)) = h(π(n1));ω

According to the definition of h, there exists a node n on the path π(n2) such that:

h(π(n)) = h(π(n1))

According to (1), this means that n must be n1, so there is a path π(n1, n2). Each

edge in the execution tree t goes from the parent node to the child node, so the path

π(n1, n2) is unique.

A.3.3 Proof of Lemma 6.2.10

Lemma A.3.3. Let n be a leaf node in an execution tree t, and suppose that:

h(π(n)) = ω1ω2...ωj

Then:

tpc(n)
.
= extract(ω1) ∧

extract(ω1, ω1ω2) ∧

...

extract(ω1...ωj−1, ω1...ωj−1ωj)

Proof. The proof is done by induction on j, i.e., the length of h(π(n)).

Base case: If j = 1, then:

h(π(n)) = ω1

and by the definition of extract :

tpc(n)
.
= extract(ω1)
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Induction step: We assume that:

h(π(n)) = ω1 . . . ωn−1ωn

By the definition of h, there exists a node n′ such that:

h(π(n′)) = ω1 . . . ωn−1

According to the induction hypothesis:

tpc(n′)
.
= extract(ω1) ∧

extract(ω1, ω1ω2) ∧

... ∧

extract(ω1 . . . ωn−2, ω1 . . . ωn−1)

and according to the definition of extract :

tpc(n′, n)
.
= extract(ω1 . . . ωn−1, ω1 . . . ωn)

Finally, from the definition of tpc:

tpc(n)
.
= tpc(n′) ∧ tpc(n′, n)

.
= extract(ω1) ∧

extract(ω1, ω1ω2) ∧

... ∧

extract(ω1 . . . ωn−2, ω1 . . . ωn−1)

extract(ω1 . . . ωn−1, ω1 . . . ωn)

A.3.4 Proof of Theorem 6.2.11

Theorem A.3.4. Given an execution tree t and a set {nj}nj=1 of leaf nodes in t,

suppose that {(nj , kj)}nj=1 match the regular pattern (ω1, ω2, ω3). If (φ1, φ2(x), φ3(x))
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is a formula pattern that satisfies:

φ1
.
= extract(ω1)

φ2[i/x]
.
= extract(ω1ω

i−1
2 , ω1ω

i
2) (i = 1, ...,max{kj}nj=1)

φ3[kj/x]
.
= extract(ω1ω

kj
2 , ω1ω

kj
2 ω3) (j = 1, ..., n)

then {(nj , kj)}nj=1 match (φ1, φ2(x), φ3(x)).

Proof. We assumed that {(nj , kj)}nj=1 match (ω1, ω2, ω3), so:

h(π(nj)) ≜ ω1ω
kj
2 ω3 (j = 1, ..., n)

According to Lemma 6.2.10:

tpc(nj)
.
= extract(ω1) ∧

...

extract(ω1ω
kj−1
2 , ω1ω

kj
2 ) ∧

extract(ω1ω
kj
2 , ω1ω

kj
2 ω3)

and we also assumed that:

φ1
.
= extract(ω1)

φ2[i/x]
.
= extract(ω1ω

i−1
2 , ω1ω

i
2) (i = 1, ...,max{kj}nj=1)

φ3[kj/x]
.
= extract(ω1ω

kj
2 , ω1ω

kj
2 ω3) (j = 1, ..., n)

so:

tpc(nj)
.
= φ1 ∧

kj∧
i=1

φ2[i/x] ∧ φ3[kj/x] (j = 1, ..., n)

and therefore {(tpc(nj), kj)}nj=1 match (φ1, φ2(x), φ3(x)).


	Introduction
	Background
	Symbolic Execution
	Memory Modeling

	Main Results
	Relocatable Memory Model
	Address-Aware Query Caching
	Bounded Symbolic-Size Model
	State Merging with Quantifiers
	Artifacts Availability


	Preliminaries
	Logical Notations
	Standard Memory Model
	Symbolic State
	Execution Tree
	State Merging

	Relocatable Addressing Model for Symbolic Execution
	Introduction
	Proposed Addressing Model
	Relocatable Addressing Model
	Limitations
	Application: Inter-object Partitioning
	Application: Intra-object Partitioning

	Implementation
	Evaluation
	Empirical Validation
	Inter-object Partitioning
	Intra-object Partitioning


	Address-Aware Query Caching for Symbolic Execution
	Introduction
	Standard Query Caching
	Address-Aware Query Caching
	Motivation
	Algorithm
	Limitations

	Correctness
	Implementation
	Evaluation
	Benchmarks
	Empirical Validation
	Performance
	Overhead


	A Bounded Symbolic-Size Model for Symbolic Execution
	Introduction
	Technique
	Bounded Symbolic-Size Model
	Mitigating Path Explosion By State Merging
	Optimizations
	Limitations

	Implementation
	Evaluation
	Experimental Setup
	API Testing
	Whole-Program Testing
	Discussion


	State Merging with Quantifiers in Symbolic Execution
	Introduction
	State Merging with Quantifiers
	Identifying Merging Groups via Regular Patterns
	Pattern-Based State Merging
	Synthesizing Formula Patterns

	Incremental State Merging
	Solving Quantified Queries
	Notations
	Solving Procedure

	Implementation
	Evaluation
	Benchmarks
	Setup
	Results: PAT vs. CFG
	Results: PAT vs. Base
	Results: Component Breakdown
	Additional Experimental Results
	Found Bugs
	Threats to Validity
	Discussion


	Related Work
	Memory Models
	MemSight
	Segmented Memory Model
	Segment-Offset-Plane
	CUTE
	UC-KLEE
	Memory Abstraction Techniques
	Memory Partitioning
	Other Memory Models

	Constraint Solving
	State Merging
	Loop Summaries
	Encoding with Quantifiers
	Static Analysis

	Conclusions
	Future Work
	Proofs
	Address-Aware Query Caching
	Proof of aaqc:agnostic-ops
	Proof of aaqc:agnostic-l1
	Proof of aaqc:agnostic-guard
	Proof of aaqc:agnostic-specification-equiv
	Proof of aaqc:agnostic-specification
	Proof of aaqc:agnostic-engine

	State Merging Optimizations
	Pattern-Based State Merging
	Proof of smq:theorem:state-merging
	Proof of smq:lemma:path-word-correspondence
	Proof of smq:lemma:synthesis
	Proof of smq:theorem:synthesis



